首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) in higher eukaryotes requires the functions of several cellular proteins and includes nuclear as well as cytoplasmic phases. In the cytoplasm, a macromolecular complex containing the survival motor neuron (SMN) protein, Gemin2-8 and Unrip mediates the ATP-dependent assembly of Sm proteins and snRNAs into snRNPs. To carry out snRNP assembly, the SMN complex binds directly to both Sm proteins and snRNAs; however, the contribution of the individual components of the SMN complex to its composition, interactions, and function is poorly characterized. Here, we have investigated the functional role of Gemin8 using novel monoclonal antibodies against components of the SMN complex and RNA interference experiments. We show that Gemin6, Gemin7, and Unrip form a stable cytoplasmic complex whose association with SMN requires Gemin8. Gemin8 binds directly to SMN and mediates its interaction with the Gemin6/Gemin7 heterodimer. Importantly, loss of Gemin6, Gemin7, and Unrip interaction with SMN as a result of Gemin8 knockdown affects snRNP assembly by impairing the SMN complex association with Sm proteins but not with snRNAs. These results reveal the essential role of Gemin8 for the proper structural organization of the SMN complex and the involvement of the heteromeric subunit containing Gemin6, Gemin7, Gemin8, and Unrip in the recruitment of Sm proteins to the snRNP assembly pathway.  相似文献   

2.
The survival of motor neuron (SMN) protein, responsible for the neurodegenerative disease spinal muscular atrophy (SMA), oligomerizes and forms a stable complex with seven other major components, the Gemin proteins. Besides the SMN protein, Gemin2 is a core protein that is essential for the formation of the SMN complex, although the mechanism by which it drives formation is unclear. We have found a novel interaction, a Gemin2 self-association, using the mammalian two-hybrid system and the in vitro pull-down assays. Using in vitro dissociation assays, we also found that the self-interaction of the amino-terminal SMN protein, which was confirmed in this study, became stable in the presence of Gemin2. In addition, Gemin2 knockdown using small interference RNA treatment revealed a drastic decrease in SMN oligomer formation and in the assembly activity of spliceosomal small nuclear ribonucleoprotein (snRNP). Taken together, these results indicate that Gemin2 plays an important role in snRNP assembly through the stabilization of the SMN oligomer/complex via novel self-interaction. Applying the results/techniques to amino-terminal SMN missense mutants that were recently identified from SMA patients, we successfully showed that amino-terminal self-association, Gemin2 binding, the stabilization effect of Gemin2, and snRNP assembly activity were all lowered in the mutant SMN(D44V), suggesting that instability of the amino-terminal SMN self-association may cause SMA in patients carrying this allele.  相似文献   

3.
In humans, assembly of spliceosomal snRNPs (small nuclear ribonucleoproteins) begins in the cytoplasm where the multi-protein SMN (survival of motor neuron) complex mediates the formation of a seven-membered ring of Sm proteins on to a conserved site of the snRNA (small nuclear RNA). The SMN complex contains the SMN protein Gemin2 and several additional Gemins that participate in snRNP biosynthesis. SMN was first identified as the product of a gene found to be deleted or mutated in patients with the neurodegenerative disease SMA (spinal muscular atrophy), the leading genetic cause of infant mortality. In the present study, we report the solution structure of Gemin2 bound to the Gemin2-binding domain of SMN determined by NMR spectroscopy. This complex reveals the structure of Gemin2, how Gemin2 binds to SMN and the roles of conserved SMN residues near the binding interface. Surprisingly, several conserved SMN residues, including the sites of two SMA patient mutations, are not required for binding to Gemin2. Instead, they form a conserved SMN/Gemin2 surface that may be functionally important for snRNP assembly. The SMN-Gemin2 structure explains how Gemin2 is stabilized by SMN and establishes a framework for structure-function studies to investigate snRNP biogenesis as well as biological processes involving Gemin2 that do not involve snRNP assembly.  相似文献   

4.
A macromolecular complex containing survival of motor neurons (SMN), the spinal muscular atrophy protein, and Gemin2-7 interacts with Sm proteins and snRNAs to carry out the assembly of these components into spliceosomal small nuclear ribonucleoproteins (snRNPs). Here we report the characterization of unr-interacting protein (unrip), a GH-WD protein of unknown function, as a component of the SMN complex that interacts directly with Gemin6 and Gemin7. Unrip also binds a subset of Sm proteins, and unrip-containing SMN complexes are necessary and sufficient to mediate the assembly of spliceosomal snRNPs. These results demonstrate that unrip functions in the pathway of snRNP biogenesis and is a marker of cellular SMN complexes active in snRNP assembly.  相似文献   

5.
The survival of motor neurons (SMN) complex is essential for the biogenesis of small nuclear ribonucleoprotein (snRNP) complexes in eukaryotic cells. Reduced levels of SMN cause the motor neuron degenerative disease, spinal muscular atrophy. We identify here stable subunits of the SMN complex that do not contain SMN. Sedimentation and immunoprecipitation experiments using cell extracts reveal at least three complexes composed of Gemin3, -4, and -5; Gemin6, -7, and unrip; and SMN with Gemin2, as well as free Gemin5. Complexes containing Gemin3-Gemin4-Gemin5 and Gemin6-Gemin7-unrip persist at similar levels when SMN is reduced. In cells, immunofluorescence microscopy shows differential localization of Gemin5 after cell stress. We further show that the Gemin5-containing subunits bind small nuclear RNA independently of the SMN complex and without a requirement for exogenous ATP. ATP hydrolysis is, however, required for displacement of small nuclear RNAs from the Gemin5-containing subunits and their assembly into snRNPs. These findings demonstrate a modular nature of the SMN complex and identify a new intermediate in the snRNP assembly process.  相似文献   

6.
The survival motor neuron (SMN) protein is the product of the spinal muscular atrophy disease gene. SMN and Gemin2-7 proteins form a large macromolecular complex that localizes in the cytoplasm as well as in the nucleoplasm and in nuclear Gems. The SMN complex interacts with several additional proteins and likely functions in multiple cellular pathways. In the cytoplasm, a subset of SMN complexes containing unrip and Sm proteins mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Here, by mass spectrometry analysis of SMN complexes purified from HeLa cells, we identified a novel protein that is evolutionarily conserved in metazoans, and we named it Gemin8. Co-immunoprecipitation and immunolocalization experiments demonstrated that Gemin8 is associated with the SMN complex and is localized in the cytoplasm and in the nucleus, where it is highly concentrated in Gems. Gemin8 interacts directly with the Gemin6-Gemin7 heterodimer and, together with unrip, these proteins form a heteromeric subunit of the SMN complex. Gemin8 is also associated with Sm proteins, and Gemin8-containing SMN complexes are competent to carry out snRNP assembly. Importantly, RNA interference experiments indicate that Gemin8 knock-down impairs snRNP assembly, and Gemin8 expression is down-regulated in cells with low levels of SMN. These results demonstrate that Gemin8 is a novel integral component of the SMN complex and extend the repertoire of cellular proteins involved in the pathway of snRNP biogenesis.  相似文献   

7.
Spinal muscular atrophy (SMA) is a motor neuron disease caused by reduced levels of the survival motor neuron (SMN) protein. SMN together with Gemins2-8 and unrip proteins form a macromolecular complex that functions in the assembly of small nuclear ribonucleoproteins (snRNPs) of both the major and the minor splicing pathways. It is not known whether the levels of spliceosomal snRNPs are decreased in SMA. Here we analyzed the consequence of SMN deficiency on snRNP metabolism in the spinal cord of mouse models of SMA with differing phenotypic severities. We demonstrate that the expression of a subset of Gemin proteins and snRNP assembly activity are dramatically reduced in the spinal cord of severe SMA mice. Comparative analysis of different tissues highlights a similar decrease in SMN levels and a strong impairment of snRNP assembly in tissues of severe SMA mice, although the defect appears smaller in kidney than in neural tissue. We further show that the extent of reduction in both Gemin proteins expression and snRNP assembly activity in the spinal cord of SMA mice correlates with disease severity. Remarkably, defective SMN complex function in snRNP assembly causes a significant decrease in the levels of a subset of snRNPs and preferentially affects the accumulation of U11 snRNP--a component of the minor spliceosome--in tissues of severe SMA mice. Thus, impairment of a ubiquitous function of SMN changes the snRNP profile of SMA tissues by unevenly altering the normal proportion of endogenous snRNPs. These findings are consistent with the hypothesis that SMN deficiency affects the splicing machinery and in particular the minor splicing pathway of a rare class of introns in SMA.  相似文献   

8.
The survival of motor neurons (SMN) protein, the product of the neurodegenerative disease spinal muscular atrophy (SMA) gene, is localized both in the cytoplasm and in discrete nuclear bodies called gems. In both compartments SMN is part of a large complex that contains several proteins including Gemin2 (formerly SIP1) and the DEAD box protein Gemin3. In the cytoplasm, the SMN complex is associated with snRNP Sm core proteins and plays a critical role in spliceosomal snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing by serving in the regeneration of spliceosomes. These functions are likely impaired in cells of SMA patients because they have reduced levels of functional SMN. Here, we report the identification by nanoelectrospray mass spectrometry of a novel component of the SMN complex that we name Gemin4. Gemin4 is associated in vivo with the SMN complex through a direct interaction with Gemin3. The tight interaction of Gemin4 with Gemin3 suggests that it could serve as a cofactor of this DEAD box protein. Gemin4 also interacts directly with several of the Sm core proteins. Monoclonal antibodies against Gemin4 efficiently immunoprecipitate the spliceosomal U snRNAs U1 and U5 from Xenopus oocytes cytoplasm. Immunolocalization experiments show that Gemin4 is colocalized with SMN in the cytoplasm and in gems. Interestingly, Gemin4 is also detected in the nucleoli, suggesting that the SMN complex may also function in preribosomal RNA processing or ribosome assembly.  相似文献   

9.
10.
Membership of the survival motor neuron (SMN) complex extends to nine factors, including the SMN protein, the product of the spinal muscular atrophy (SMA) disease gene, Gemins 2–8 and Unrip. The best-characterised function of this macromolecular machine is the assembly of the Sm-class of uridine-rich small nuclear ribonucleoprotein (snRNP) particles and each SMN complex member has a key role during this process. So far, however, only little is known about the function of the individual Gemin components in vivo. Here, we make use of the Drosophila model organism to uncover loss-of-function phenotypes of Gemin2, Gemin3 and Gemin5, which together with SMN form the minimalistic fly SMN complex. We show that ectopic overexpression of the dead helicase Gem3ΔN mutant or knockdown of Gemin3 result in similar motor phenotypes, when restricted to muscle, and in combination cause lethality, hence suggesting that Gem3ΔN overexpression mimics a loss-of-function. Based on the localisation pattern of Gem3ΔN, we predict that the nucleus is the primary site of the antimorphic or dominant-negative mechanism of Gem3ΔN-mediated interference. Interestingly, phenotypes induced by human SMN overexpression in Drosophila exhibit similarities to those induced by overexpression of Gem3ΔN. Through enhanced knockdown we also uncover a requirement of Gemin2, Gemin3 and Gemin5 for viability and motor behaviour, including locomotion as well as flight, in muscle. Notably, in the case of Gemin3 and Gemin5, such function also depends on adequate levels of the respective protein in neurons. Overall, these findings lead us to speculate that absence of any one member is sufficient to arrest the SMN-Gemins complex function in a nucleocentric pathway, which is critical for motor function in vivo.  相似文献   

11.
Zhang R  So BR  Li P  Yong J  Glisovic T  Wan L  Dreyfuss G 《Cell》2011,146(3):384-395
The SMN complex mediates the assembly of heptameric Sm protein rings on small nuclear RNAs (snRNAs), which are essential for snRNP function. Specific Sm core assembly depends on Sm proteins and snRNA recognition by SMN/Gemin2- and Gemin5-containing subunits, respectively. The mechanism by which the Sm proteins are gathered while preventing illicit Sm assembly on non-snRNAs is unknown. Here, we describe the 2.5?? crystal structure of Gemin2 bound to SmD1/D2/F/E/G pentamer and SMN's Gemin2-binding domain, a key assembly intermediate. Remarkably, through its extended conformation, Gemin2 wraps around the crescent-shaped pentamer, interacting with all five Sm proteins, and gripping its bottom and top sides and outer perimeter. Gemin2 reaches into the RNA-binding pocket, preventing RNA binding. Interestingly, SMN-Gemin2 interaction is abrogated by a spinal muscular atrophy (SMA)-causing mutation in an SMN helix that mediates Gemin2 binding. These findings provide insight into SMN complex assembly and specificity, linking snRNP biogenesis and SMA pathogenesis.  相似文献   

12.
The assembly of metazoan Sm-class small nuclear ribonucleoproteins (snRNPs) is an elaborate, step-wise process that takes place in multiple subcellular compartments. The initial steps, including formation of the core RNP, are mediated by the survival motor neuron (SMN) protein complex. Loss-of-function mutations in human SMN1 result in a neuromuscular disease called spinal muscular atrophy. The SMN complex is comprised of SMN and a number of tightly associated proteins, collectively called Gemins. In this report, we identify and characterize the fruitfly ortholog of the DEAD box protein, Gemin3. Drosophila Gemin3 (dGem3) colocalizes and interacts with dSMN in vitro and in vivo. RNA interference for dGem3 codepletes dSMN and inhibits efficient Sm core assembly in vitro. Transposon insertion mutations in Gemin3 are larval lethals and also codeplete dSMN. Transgenic overexpression of dGem3 rescues lethality, but overexpression of dSMN does not, indicating that loss of dSMN is not the primary cause of death. Gemin3 mutant larvae exhibit motor defects similar to previously characterized Smn alleles. Remarkably, appreciable numbers of Gemin3 mutants (along with one previously undescribed Smn allele) survive as larvae for several weeks without pupating. Our results demonstrate the conservation of Gemin3 protein function in metazoan snRNP assembly and reveal that loss of either Smn or Gemin3 can contribute to neuromuscular dysfunction.  相似文献   

13.
The SMN-Gemins complex is composed of Gemins 2–8, Unrip and the survival motor neuron (SMN) protein. Limiting levels of SMN result in the neuromuscular disorder, spinal muscular atrophy (SMA), which is presently untreatable. The most-documented function of the SMN-Gemins complex concerns the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). Despite multiple genetic studies, the Gemin proteins have not been identified as prominent modifiers of SMN-associated mutant phenotypes. In the present report, we make use of the Drosophila model organism to investigate whether viability and motor phenotypes associated with a hypomorphic Gemin3 mutant are enhanced by changes in the levels of SMN, Gemin2 and Gemin5 brought about by various genetic manipulations. We show a modifier effect by all three members of the minimalistic fly SMN-Gemins complex within the muscle compartment of the motor unit. Interestingly, muscle-specific overexpression of Gemin2 was by itself sufficient to depress normal motor function and its enhanced upregulation in all tissues leads to a decline in fly viability. The toxicity associated with increased Gemin2 levels is conserved in the yeast S. pombe in which we find that the cytoplasmic retention of Sm proteins, likely reflecting a block in the snRNP assembly pathway, is a contributing factor. We propose that a disruption in the normal stoichiometry of the SMN-Gemins complex depresses its function with consequences that are detrimental to the motor system.  相似文献   

14.
The common neurodegenerative disease spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein. SMN associates with several proteins (Gemin2 to Gemin6) to form a large complex which is found both in the cytoplasm and in the nucleus. The SMN complex functions in the assembly and metabolism of several RNPs, including spliceosomal snRNPs. The snRNP core assembly takes place in the cytoplasm from Sm proteins and newly exported snRNAs. Here, we identify three distinct cytoplasmic SMN complexes, each representing a defined intermediate in the snRNP biogenesis pathway. We show that the SMN complex associates with newly exported snRNAs containing the nonphosphorylated form of the snRNA export factor PHAX. The second SMN complex identified contains assembled Sm cores and m(3)G-capped snRNAs. Finally, the SMN complex is associated with a preimport complex containing m(3)G-capped snRNP cores bound to the snRNP nuclear import mediator snurportin1. Thus, the SMN complex is associated with snRNPs during the entire process of their biogenesis in the cytoplasm and may have multiple functions throughout this process.  相似文献   

15.
Uridine-rich small nuclear ribonucleoproteins (U snRNPs) play key roles in pre-mRNA processing in the nucleus. The assembly of most U snRNPs takes place in the cytoplasm and is facilitated by the survival motor neuron (SMN) complex. Discrete cytoplasmic RNA granules called U bodies have been proposed to be specific sites for snRNP assembly because they contain U snRNPs and SMN. U bodies invariably associate with P bodies, which are involved in mRNA decay and translational control. However, it remains unknown whether other SMN complex proteins also localise to U bodies. In Drosophila there are four SMN complex proteins, namely SMN, Gemin2/CG10419, Gemin3 and Gemin5/Rigor mortis. Drosophila Gemin3 was originally identified as the Drosophila orthologue of human and yeast Dhh1, a component of P bodies. Through an in silico analysis of the DEAD-box RNA helicases we confirmed that Gemin3 is the bona fide Drosophila orthologue of vertebrate Gemin3 whereas the Drosophila orthologue of Dhh1 is Me31B. We then made use of the Drosophila egg chamber as a model system to study the subcellular distribution of the Gemin proteins as well as Me31B. Our cytological investigations show that Gemin2, Gemin3 and Gemin5 colocalise with SMN in U bodies. Although they are excluded from P bodies, as components of U bodies, Gemin2, Gemin3 and Gemin5 are consistently found associated with P bodies, wherein Me31B resides. In addition to a role in snRNP biogenesis, SMN complexes residing in U bodies may also be involved in mRNP assembly and/or transport.  相似文献   

16.
The survival of motor neurons (SMN) gene is the disease gene of spinal muscular atrophy (SMA), a common motor neuron degenerative disease. The SMN protein is part of a complex containing several proteins, of which one, SIP1 (SMN interacting protein 1), has been characterized so far. The SMN complex is found in both the cytoplasm and in the nucleus, where it is concentrated in bodies called gems. In the cytoplasm, SMN and SIP1 interact with the Sm core proteins of spliceosomal small nuclear ribonucleoproteins (snRNPs), and they play a critical role in snRNP assembly. In the nucleus, SMN is required for pre-mRNA splicing, likely by serving in the regeneration of snRNPs. Here, we report the identification of another component of the SMN complex, a novel DEAD box putative RNA helicase, named Gemin3. Gemin3 interacts directly with SMN, as well as with SmB, SmD2, and SmD3. Immunolocalization studies using mAbs to Gemin3 show that it colocalizes with SMN in gems. Gemin3 binds SMN via its unique COOH-terminal domain, and SMN mutations found in some SMA patients strongly reduce this interaction. The presence of a DEAD box motif in Gemin3 suggests that it may provide the catalytic activity that plays a critical role in the function of the SMN complex on RNPs.  相似文献   

17.
Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with beta-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins.  相似文献   

18.
The proper assembly of neural circuits during development requires the precise control of axon outgrowth, guidance, and arborization. Although the protocadherin family of cell surface receptors is widely hypothesized to participate in neural circuit assembly, their specific roles in neuronal development remain largely unknown. Here we demonstrate that zebrafish pcdh18b is involved in regulating axon arborization in primary motoneurons. Although axon outgrowth and elongation appear normal, antisense morpholino knockdown of pcdh18b results in dose-dependent axon branching defects in caudal primary motoneurons. Cell transplantation experiments show that this effect is cell autonomous. Pcdh18b interacts with Nap1, a core component of the WAVE complex, through its intracellular domain, suggesting a role in the control of actin assembly. Like that of Pcdh18b, depletion of Nap1 results in reduced branching of motor axons. Time-lapse imaging and quantitative analysis of axon dynamics indicate that both Pcdh18b and Nap1 regulate axon arborization by affecting the density of filopodia along the shaft of the extending axon.  相似文献   

19.
20.
Gao J  Zhang C  Yang B  Sun L  Zhang C  Westerfield M  Peng G 《PloS one》2012,7(5):e36516
The guidance receptor DCC (deleted in colorectal cancer) ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt) neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号