首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

There is still an open question how to predict colorectal cancer risk before any morphological changes appear in the colon.

Objective

The purpose was to investigate aberrations in chromosomes 1, 2 and 4 in peripheral blood lymphocytes analyzed by fluorescence in situ hybridization technique as a tool to assess the likelihood of colorectal cancer.

Methods

A hospital-based case-control study included 20 colon cancer patients and 18 hospital-based controls. Information about potential covariates was collected by interview. The frequency of stable and unstable chromosome aberrations in chromosome 1, 2 and 4 was assessed by fluorescence in situ hybridization technique.

Results

Colorectal cancer patients, as compared to controls, had a relatively higher frequency of chromosome 1 translocations (median: 3.5 versus 1.0 /1000 cells, p = 0.006), stable aberrations (3.8 versus 1.0 /1000 cells, p = 0.007) and total aberrations (p = 0.009). There were no differences observed for chromosomes 2 and 4. Our results showed an increase in the odds of having colon cancer by about 50–80% associated with an increase by 1/1000 cells in the number of chromosome 1 aberrations.

Conclusions

The results revealed that the frequency of chromosomal aberrations, especially translocations in chromosome 1, seems to be a promising method to show a colon cancer risk. Additionally, our study suggests the reasonableness of use of biomarkers such as chromosome 1 aberrations in peripheral blood lymphocytes in screening prevention programs for individuals at higher colon cancer risk to identify those who are at increased risk and require more frequent investigations, e.g. by sigmoidoscopy.  相似文献   

2.
We evaluated the genetic changes in bladder cancer biopsy by fluorescence in situ hybridization (FISH) and related them to stage and grade of the tumor, ploidy (FCM) and clinical outcome, to determine a simple method to identify tumors with a poorer prognosis. Using FISH the numerical aberrations of chromosomes 1, 7, 9, 17 in tumor's imprints of 70 patients with transitional cell cancer (TCC) were determined. First of all, the data demonstrated that the sensitivity of FISH in detecting quantitative DNA aberrations exceeds FCM's sensitivity. The frequency of chromosome 1 and 9 aberrations did not show significant differences in diploid and aneuploid tumors in different stage and grade. On the contrary, the chromosome 7 and 17 aneusomy showed greater differences between pT1 and pT2-3 tumors (p<0.032 and p<0.0006, respectively) than between stage pTa and pT1. In our investigation, an increasing number of aberrations was observed in all chromosomes examined in tumors of patients who afterwards underwent cystectomy and/or had recurrent tumors. These results suggest that chromosome 7 and 17 aneusomy could be predictive of adverse outcome in a subgroup of patients with superficial tumors at presentation.  相似文献   

3.
A three-color chromosome painting technique was used to examine the spontaneous and radiation-induced chromosomal damage in peripheral lymphocytes and lymphoblastoid cells from 11 patients with ataxia telangiectasia (AT) and from 14 individuals heterozygous for an AT allele. In addition, cells from two homozygous and six obligate heterozygous carriers of mutations in the Nijmegen breakage syndrome gene (NBS) were investigated. The data were compared to those for chromosome damage in 10 unaffected control individuals and 48 cancer patients who had not yet received therapeutic treatment. Based on the well-documented radiation sensitivity of AT and NBS patients, it was of particular interest to determine whether the FISH painting technique used in these studies allowed the reliable detection of an increased sensitivity to in vitro irradiation of cells from heterozygous carriers. Peripheral blood lymphocytes and lymphoblastoid cells from both the homozygous AT and NBS patients showed the highest cytogenetic response, whereas the cells from control individuals had a low number of chromosomal aberrations. The response of cells from heterozygous carriers was intermediate and could be clearly differentiated from those of the other groups in double-coded studies. AT and NBS heterozygosity could be distinguished from other genotypes by the total number of breakpoints per cell and also by the number of the long-lived stable aberrations in both AT and NBS. Only AT heterozygosity could be distinguished by the fraction of unstable chromosome changes. The slightly but not significantly increased radiosensitivity that was found in cancer patients was apparently due to a higher trend toward rearrangements compared to the controls. Thus the three-color painting technique presented here proved to be well suited as a supplement to conventional cytogenetic techniques for the detection of heterozygous carriers of these diseases, and may be superior method.  相似文献   

4.
An apparently identical marker chromosome resulting from a chromosome 1. translocation was found in the mammary carcinomas of two bitches. Although these karyotypic aberrations were the sole clonal aberrations detected, it was not possible to unambiguously identify the material translocated to the chromosome 1 in either animal. Our observations, however, represent the first report of a recurring marker chromosome in mammary tumors of the dog and suggest that these tumors may become an interesting model for human breast cancer.  相似文献   

5.
Conventional banding techniques can characterize chromosomal aberrations associated with tumors and congenital diseases with considerable precision. However, chromosomal aberrations that have been overlooked or are difficult to analyze even by skilled cytogeneticists were also often noted. Following the introduction of multicolor karyotyping such as spectral karyotyping (SKY) and multiplex-fluorescence in situ hybridization (M-FISH), it is possible to identify this kind of cryptic or complex aberration comprehensively by a single analysis. To date, multicolor karyotyping techniques have been established as useful tools for cytogenetic analysis. However, since this technique depends on whole chromosome painting probes, it involves limitations in that the origin of aberrant segments can be identified only in units of chromosomes. To overcome these limitations, we have recently developed spectral color banding (SCAN) as a new multicolor banding technique based on the SKY methodology. This new technique may be deemed as an ideal chromosome banding technique since it allows representation of a multicolor banding pattern matching the corresponding G-banding pattern. We applied this technique to the analysis of chromosomal aberrations in tumors that had not been fully characterized by G-banding or SKY and found it capable of (1) detecting intrachromosomal aberrations; (2) identifying the origin of aberrant segments in units of bands; and (3) precisely determining the breakpoints of complex rearrangements. We also demonstrated that SCAN is expected to allow cytogenetic analysis with a constant adequate resolution close to the 400-band level regardless of the degree of chromosome condensation. As compared to the conventional SKY analysis, SCAN has remarkably higher accuracy for a particular chromosome, allowing analysis in units of bands instead of in units of chromosomes and is hence promising as a means of cytogenetic analysis.  相似文献   

6.
The objective of this state of the art paper is to review the mechanisms of induction, the fate, the methodology, the sensitivity/specificity and predictivity of two major cytogenetic endpoints applied for genotoxicity studies and biomonitoring purposes: chromosome aberrations and micronuclei. Chromosomal aberrations (CAs) are changes in normal chromosome structure or number that can occur spontaneously or as a result of chemical/radiation treatment. Structural CAs in peripheral blood lymphocytes (PBLs), as assessed by the chromosome aberration (CA) assay, have been used for over 30 years in occupational and environmental settings as a biomarker of early effects of genotoxic carcinogens. A high frequency of structural CAs in lymphocytes (reporter tissue) is predictive of increased cancer risk, irrespective of the cause of the initial CA increase. Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids that lag behind in anaphase and are not included in the daughter nuclei in telophase. The cytokinesis-block micronucleus (CBMN) assay is the most extensively used method for measuring MN in human lymphocytes, and can be considered as a "cytome" assay covering cell proliferation, cell death and chromosomal changes. The key advantages of the CBMN assay lie in its ability to detect both clastogenic and aneugenic events and to identify cells which divided once in culture. Evaluation of the mechanistic origin of individual MN by centromere and kinetochore identification contributes to the high sensitivity of the method. A number of findings support the hypothesis of a predictive association between the frequency of MN in cytokinesis-blocked lymphocytes and cancer development. Recent advances in fluorescence in situ hybridization (FISH) and microarray technologies are modifying the nature of cytogenetics, allowing chromosome and gene identification on metaphase as well as in interphase. Automated scoring by flow cytometry and/or image analysis will enhance their applicability.  相似文献   

7.
Ionizing radiation produces many chromosome aberrations. A rich variety of aberration types can now be seen with the technique of chromosome painting. Apart from being important in medicine and public health, radiation-produced aberrations act as colorful molecular clues to damage-processing mechanisms and, because juxtaposition of different parts of the genome is involved, to interphase nuclear organization. Recent studies using chromosome painting have helped to identify DNA double-strand-break repair and misrepair pathways, to determine the extent of chromosome territories and motions, and to characterize different aberration patterns left behind by different kinds of radiation.  相似文献   

8.
Karyotype analysis, performed on the basis of chromosome banding pattern, is a standard method used for identification of chromosomal aberrations, both numerical and structural. The application of classic cytogenetic techniques fails, however, to solve all diagnostic problems in certain types of chromosome aberrations. In this study, quantitative polymerase chain reaction technique (Q-PCR) application was applied to verify a cytogenetic diagnosis, which assumed that a difference observed in the banding pattern of homologous chromosome 6q12-13 region of a foetus had resulted from an inversion and/or duplication of the region in question. The obtained results indicate a possibility to use the Q-PCR method in the diagnostics of unbalanced chromosomal aberrations.  相似文献   

9.
A key feature of cancer chromosomes and genomes is their high level of dynamics and the ability to constantly evolve. This unique characteristic forms the basis of genetic heterogeneity necessary for cancer formation, which presents major obstacles to current cancer diagnosis and treatment. It has been difficult to integrate such dynamics into traditional models of cancer progression. In this conceptual piece, we briefly discuss some of the recent exciting progress in the field of cancer genomics and genome research. In particular, a re-evaluation of the previously disregarded non-clonal chromosome aberrations (NCCAs) is reviewed, coupled with the progress of the detection of sub-chromosomal aberrations with array technologies. Clearly, the high level of genetic heterogeneity is directly caused by genome instability that is mediated by stochastic genomic changes, and genome variations defined by chromosome aberrations are the driving force of cancer progression. In addition to listing various types of non-recurrent chromosomal aberrations, we discuss the likely mechanism underlying cancer chromosome dynamics. Finally, we call for further examination of the features of dynamic genome diseases including cancer in the context of systems biology and the need to integrate this new knowledge into basic research and clinical applications. This genome centric concept will have a profound impact on the future of biological and medical research.  相似文献   

10.
The theoretical view that genome aberrations rather than gene mutations cause a majority of cancers has gained increasing support from recent experimental data. Genetic aberration at the chromosome level is a key aspect of genome aberration and the systematic definition of chromosomal aberrations with their impact on genome variation and cancer genome evolution is of great importance. However, traditionally, efforts have focused on recurrent clonal chromosome aberrations (CCAs). The significance of stochastic non-clonal chromosome aberrations (NCCAs) is discussed in this paper with emphasis on the simple types of NCCAs that have until recently been considered "non-significant background". Comparison of various subtypes of transitional and late-stage CCAs with simple and complex types of NCCAs has uncovered a dynamic relationship among NCCAs, CCAs, overall genomic instability, and karyotypic evolution, as well as the stochastic nature of cancer evolution. Here, we review concepts and methodologies to measure NCCAs and discuss the possible causative mechanism and consequences of NCCAs. This study raises challenging questions regarding the concept of cancer evolution driven by stochastic chromosomal aberration mediated genome irregularities that could have repercussions reaching far beyond cancer and organismal genomes.  相似文献   

11.
The radiation sensitivity of fibroblasts isolated from bilateral retinoblastoma (RB) patients was investigated using an in vitro micronucleus assay. Bilateral RB is an autosomal dominant disease associated with a single locus, RB-1; therefore, all cells in an affected individual carry the germ line mutation. The ability to identify gene carriers made it possible to study the effect of the RB-1 mutation in the heterozygous state on the sensitivity of the cells to chromosome breakage by gamma-rays. The micronucleus assay was chosen for this study since it is a quick and easy measure of chromosomal aberrations. The fibroblasts from bilateral RB patients did not differ systematically from the normal fibroblasts in either the spontaneous or the induced rates of micronucleus production. Thus, bilateral RB fibroblasts are not more sensitive to the clastogenic effects of gamma-radiation than the controls.  相似文献   

12.
The analysis of plutonium production factors has been carried out by using two methodical approaches: assessment of chromosomal aberrations level in routine and G-banded metaphases and molecular-cytogenetic investigation of aneugenic/clastogenic damages in cytokinesis-block binuclear lymphocytes by FISH with centromere specific DNA probes. The obtaining data point out for the first time about both aneugenic and clastogenic influences of incorporated 239Pu with activity range from 0.37 to 6.95 kBq. Correlation analysis of chromosome aberrations with cytome abnormalities allowed finding significant connection between number parameters of metaphase and interphase approaches. The results of this study support the suggestion that aberrant chromosomes are involved preferable in aneugenic events. The FISH technique in binucleated cytokinesis-blocked lymphocytes allows extending of detecting spectrum of chromosome damages and glance of aneugenic mechanisms. Correlations between metaphase and interphase-FISH results point out a high sensitivity of FISH cytome assay, which could be used as an independent test for detection both clastogenic and aneugenic environment influences.  相似文献   

13.
Y Matsuda  T Yamada  I Tobari 《Mutation research》1985,148(1-2):113-117
The induction of chromosome aberrations in eggs of mice fertilized with X-irradiated sperm was performed by using an in vitro fertilization technique. Capacitated mature sperm was irradiated with various doses of X-rays and cytological analysis of the first cleavage metaphase of in vitro fertilized eggs was made. The frequencies of chromosome aberrations increased exponentially with dose and the dose-response relationship for overall breaks fitted well to a quadratic equation. The chromosome aberrations were mainly chromosome-type (82.1%), and the majority of aberrations were fragments.  相似文献   

14.
Conventional method to identify and classify individual chromosomes depends on the unique banding pattern of each chromosome in a specific species being analyzed 1, 2. This classical banding technique, however, is not reliable in identifying complex chromosomal aberrations such as those associated with cancer. To overcome the limitations of the banding technique, Spectral Karyotyping (SKY) is introduced to provide much reliable information on chromosome abnormalities.SKY is a multicolor fluorescence in-situ hybridization (FISH) technique to detect metaphase chromosomes with spectral microscope 3, 4. SKY has been proven to be a valuable tool for the cytogenetic analysis of a broad range of chromosome abnormalities associated with a large number of genetic diseases and malignancies 5, 6. SKY involves the use of multicolor fluorescently-labelled DNA probes prepared from the degenerate oligonucleotide primers by PCR. Thus, every chromosome has a unique spectral color after in-situ hybridization with probes, which are differentially labelled with a mixture of fluorescent dyes (Rhodamine, Texas Red, Cy5, FITC and Cy5.5). The probes used for SKY consist of up to 55 chromosome specific probes 7-10.The procedure for SKY involves several steps (Figure 1). SKY requires the availability of cells with high mitotic index from normal or diseased tissue or blood. The chromosomes of a single cell from either a freshly isolated primary cell or a cell line are spread on a glass slide. This chromosome spread is labeled with a different combination of fluorescent dyes specific for each chromosome. For probe detection and image acquisition,the spectral imaging system consists of sagnac interferometer and a CCD camera. This allows measurement of the visible light spectrum emitted from the sample and to acquire a spectral image from individual chromosomes. HiSKY, the software used to analyze the results of the captured images, provides an easy identification of chromosome anomalies. The end result is a metaphase and a karyotype classification image, in which each pair of chromosomes has a distinct color (Figure 2). This allows easy identification of chromosome identities and translocations. For more details, please visit Applied Spectral Imaging website (http://www.spectral-imaging.com/).SKY was recently used for an identification of chromosome segregation defects and chromosome abnormalities in humans and mice with Autosomal Dominant Polycystic Kidney Disease (ADPKD), a genetic disease characterized by dysfunction in primary cilia 11-13. Using this technique, we demonstrated the presence of abnormal chromosome segregation and chromosomal defects in ADPKD patients and mouse models 14. Further analyses using SKY not only allowed us to identify chromosomal number and identity, but also to accurately detect very complex chromosomal aberrations such as chromosome deletions and translocations (Figure 2).  相似文献   

15.
The establishment of the correct conceptual framework is vital to any scientific discipline including cancer research. Influenced by hematologic cancer studies, the current cancer concept focuses on the stepwise patterns of progression as defined by specific recurrent genetic aberrations. This concept has faced a tough challenge as the majority of cancer cases follow non-linear patterns and display stochastic progression. In light of the recent discovery that genomic instability is directly linked to stochastic non-clonal chromosome aberrations (NCCAs), and that cancer progression can be characterized as a dynamic relationship between NCCAs and recurrent clonal chromosome aberrations (CCAs), we propose that the dynamics of NCCAs is a key element for karyotypic evolution in solid tumors. To support this viewpoint, we briefly discuss various basic elements responsible for cancer initiation and progression within an evolutionary context. We argue that even though stochastic changes can be detected at various levels of genetic organization, such as at the gene level and epigenetic level, it is primarily detected at the chromosomal or genome level. Thus, NCCA-mediated genomic variation plays a dominant role in cancer progression. To further illustrate the involvement of NCCA/CCA cycles in the pattern of cancer evolution, four cancer evolutionary models have been proposed based on the comparative analysis of karyotype patterns of various types of cancer.  相似文献   

16.
Numerical chromosome aberrations are detrimental to early embryonic, fetal and perinatal development of mammals. When fetuses carrying a chromosomal imbalance survive to term, an aberrant gene dosage typically leads to stillbirth or causes a severely altered phenotype. Aneuploidy of any of the 24 chromosomes will negatively impact on human development, and a preimplantation and prenatal genetic diagnosis test should thus score as many chromosomes as possible. Since cells available for analysis are likely to be in interphase, we set out to develop a rapid enumeration procedure based on hybridization of chromosome-specific probes and spectral imaging detection. The probe set was chosen to allow the simultaneous enumeration of ten chromosome types and was expected to detect more than 70% of all numerical chromosome aberrations responsible for spontaneous abortions, i.e., human chromosomes 9, 13, 14, 15, 16, 18, 21, 22, X, and Y. Cell fixation protocols were optimized to achieve the desired detection sensitivity and reproducibility. We were able to resolve and identify ten separate chromosomal signals in interphase nuclei from different types of cells, including lymphocytes, uncultured amniocytes, and blastomeres. In summary, this study demonstrates the strength of spectral imaging, allowing us to construct partial spectral imaging karyotypes for individual interphase cells by assessing the number of each of the target chromosome types.  相似文献   

17.
Resnick MA 《Cell》2005,120(5):569-570
In this issue of Cell, Lemoine et al. monitor chromosome instability in yeast cells with reduced levels of an essential replicative DNA polymerase. The authors identify a hotspot for chromosome aberrations reminiscent of fragile sites in human cells. This hotspot is composed of inverted Ty elements, which lead to a double-strand break under conditions of limited replication.  相似文献   

18.
Spontaneous and induced chromosome aberrations have been studied over more than a century. The resolution of detection of aberrations has depended on the improvement of available techniques. An overview on the major high lights in this area of research, from the time of solid staining to fluorescence in situ hybridization technique is presented in this review.  相似文献   

19.
Summary Chromosome aberrations in 20 lymphocytes of 20 patients with testicular germ cell tumors (TGCT) treated with surgery alone were compared with those of 20 cells from 20 healthy controls using standard G-banding technique. No increase in structural aberrations was found in the cancer group. An unexpected finding was that of more cells with losses of chromosomes being present in the control group. These losses predominantly affected small chromosomes in the control group, whereas the pattern of chromosome loss was different in the cancer group. The literature claiming increased chromosome instability in TGCT patients is reviewed. Point estimates and 95% confidence intervals to exclude such a hypothesis based on our results were calculated.  相似文献   

20.
A few years ago it was reported that some growth-hormone-deficient children had developed leukemia following therapy with human growth hormone. This raised concern that this therapy may stimulate tumor development. Since it is known that the tendency to develop cancer is closely related to chromosome breakage, we decided to investigate whether recombinant human growth hormone (rhGH) therapy can increase chromosome fragility. Ten short normal children were studied during their first year of treatment. Lymphocytes were collected at 0, 6 and 12 months of rhGH therapy, and we assessed the rate of spontaneous chromosome aberrations, the frequency of sister chromatid exchanges, the proliferative rate indices, the expression of common fragile sites induced by aphidicolin, and the sensitivity towards the radiomimetic action of bleomycin. At 6 months of therapy, there was a significant increase in bleomycin-induced chromosome aberrations, which remained unchanged after 1 year of treatment. An increase in spontaneous chromosome rearrangements at 6 and 12 months of therapy was also observed. These findings are further supported by data obtained from the analysis of 16 short normal children already on rhGH therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号