首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMO: a history of modification   总被引:1,自引:0,他引:1  
Hay RT 《Molecular cell》2005,18(1):1-12
The small ubiquitin-like modifier (SUMO) is covalently linked to a variety of proteins and is deconjugated by SUMO-specific proteases. A characteristic of SUMO modification is that the biological consequences of conjugation do not appear proportionate to the small fraction of substrate that is modified. SUMO conjugation appears to alter the long-term fate of the modified protein even though the SUMO may be rapidly deconjugated. Thus an unmodified protein with a history of SUMO modification may have different properties from a protein that never has been modified. Here, the diverse effects of SUMO modification are discussed and models proposed to explain SUMO actions.  相似文献   

2.
The reversible post-translational modifier, SUMO (small ubiquitin-related modifier), modulates the activity of a diverse set of target proteins, resulting in important consequences to the cellular machinery. Conjugation machinery charges the processed SUMO so that it can be linked via an isopeptide bond to a target protein. The removal of SUMO moieties from conjugated proteins by isopeptidases regenerates pools of processed SUMOs and unmodified target proteins. The evolutionarily conserved SUMO-conjugating proteins, E1 and E2, recognize a diverse set of Arabidopsis SUMO proteins using them to modify protein substrates. In contrast, the deSUMOylating enzymes differentially recognize the Arabidopsis SUMO proteins, resulting in specificity of the deconjugating machinery. The specificity of the Arabidopsis deSUMOylating enzymes is further diversified by the addition of regulatory domains. Therefore the SUMO proteins, in this signalling system, have evolved to contain information that allows not only redundancy with the conjugation system but also diversity with the deconjugating enzymes.  相似文献   

3.
4.
5.
6.
Dynamic modification of proteins with the small ubiquitin-like modifier (SUMO) affects the stability, cellular localization, enzymatic activity, and molecular interactions of a wide spectrum of protein targets. We have developed an in vitro fluorescence-resonance-energy-transfer-based assay that uses bacterially expressed substrates for the rapid and quantitative analysis of SUMO paralog-specific C-terminal hydrolase activity. This assay has applications in SUMO protease characterization, enzyme kinetic analysis, determination of SUMO protease activity in eukaryotic cell extracts, and high-throughput inhibitor screening. In addition, while demonstrating such uses, we show that the SUMO-1 processing activity in crude HeLa cell extracts is far greater than that of SUMO-2, implying that differential maturation rates of SUMO paralogs in vivo may be functionally significant. The high degree of structural conservation across the ubiquitin-like protein superfamily suggests that the general principle of this assay should be applicable to other post-translational protein modification systems.  相似文献   

7.
SUMO: ligases, isopeptidases and nuclear pores   总被引:1,自引:0,他引:1  
Small ubiquitin-related modifier (SUMO) proteins are reversibly coupled to numerous intracellular targets and modulate their interactions, localization, activity or stability. Recent advances in the SUMO field have uncovered the first SUMO E3 ligases and point to a complex family of isopeptidases. SUMO has been linked to many different pathways, including nucleocytoplasmic transport. Modifying enzymes and an isopeptidase have been detected at nuclear pore complexes. In addition, studies in yeast suggest a requirement of SUMO conjugation for nuclear protein import, and specific SUMO targets depend on modification for nuclear import or export.  相似文献   

8.
SUMO is a protein posttranslational modifier. SUMO cycle components are believed to be conserved in all eukaryotes. Proteomic analyses have lead to the identification a wealth of SUMO targets that are involved in almost every cellular function in eukaryotes. In this article, we describe the characterization of SUMO Cycle components in Hydra, a Cnidarian with an ability to regenerate body parts. In cells, the translated SUMO polypeptide cannot conjugate to a substrate protein unless the C‐terminal tail is cleaved, exposing the di‐Glycine motif. This critical task is done by SUMO proteases that in addition to SUMO maturation are also involved in deconjugating SUMO from its substrate. We describe the identification, bioinformatics analysis, cloning, and biochemical characterization of Hydra SUMO cycle components, with a focus on SUMO and SUMO proteases. We demonstrate that the ability of SUMO proteases to process immature SUMO is conserved from Hydra to flies. A transgenic Hydra, expressing a SUMO‐GFP fusion protein under a constitutive actin promoter, is generated in an attempt to monitor the SUMO Cycle in vivo as also to purify and identify SUMO targets in Hydra. genesis 51:619–629. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
10.
Small ubiquitin-related modifier (SUMO) genes regulate various functions of target proteins through post-translational modification. The SUMO proteins have a similar 3-dimensional structure as that of ubiquitin proteins and occur through a cascade of enzymatic reactions. In the present study we have cloned a new SUMO gene from Tomato (Solanum lycopersicum L.), cv Saudi-1, named SlS-SUMO1 gene by PCR using specific primers. This gene has SUMO member's features such as C-terminal diglycine (GG) motif as processing site by ULP (ubiquitin-like SUMO protease) and has SUMO consensus ΨKXE/D sequence. Phylogenetic analysis showed that SlS-SUMO1 gene is highly conserved and homologous to Potatoes Ca-SUMO1 and Ca-SUMO2 genes based on sequence similarity. Expression protein of SlS-SUMO1 gene found to be localized in the nucleus, cytoplasm, and nuclear envelop or nuclear pore complex. SUMO conjugating enzyme SCE1a with SlS-SUMO1 protein co-expressed and co-localized in nucleus and formed nuclear subdomains. This study reported that the SlS-SUMO1 gene is a member of SUMO family and its SUMO protein processing using GG motif and activate and transport to nucleus through Sumoylation system in the plant cell.  相似文献   

11.
泛素(ubiquitin, Ub)是一类高度保守的小蛋白, 可与靶蛋白的赖氨酸残基共价连接, 形成多聚泛素链行使功能. 类似于泛素化修饰过程, 小泛素相关修饰物(small ubiquitin related modifier, SUMO)也可以共价修饰靶蛋白的赖氨酸残基, 从而影响靶蛋白的定位、稳定性以及蛋白间的相互作用, 发挥重要的生理功能. 尽管在多数情况下, 靶蛋白发生的是单SUMO化修饰, 但最近研究发现,SUMO依赖自身的赖氨酸也可以形成多聚链. 与单SUMO化修饰不同的是, 多聚SUMO化修饰的靶蛋白可以进一步被泛素化修饰, 进而诱导靶蛋白的降解. 这是一种新的、特殊的化学修饰形式, 弄清它的生理功能,对于了解细胞的生长、分化以及凋亡等生理过程将具有重要的意义. 本文将就此方面的最新研究进展做一综述.  相似文献   

12.
13.
类泛素化修饰蛋白SUMO1的表达纯化及抗体制备   总被引:1,自引:1,他引:0  
SUMO是近年发现的类泛素化修饰蛋白,可通过异肽键共价连接到靶蛋白上,影响靶蛋白的细胞内定位、稳定性及与其它生物大分子的相互作用. 为研究蛋白质的SUMO化修饰,本文表达并利用亲和层析的方法纯化了重组的人SUMO1,制备了兔抗hSUMO1的多克隆抗体. 经ELISA和免疫印迹检测,获得了灵敏度高、特异性好的抗体,可用于SUMO化修饰靶蛋白的鉴定及SUMO化修饰的生物学功能研究.  相似文献   

14.
15.
O'Brien SP  DeLisa MP 《PloS one》2012,7(6):e38671
SUMO (small ubiquitin-related modifier) is a reversible post-translational protein modifier that alters the localization, activity, or stability of proteins to which it is attached. Many enzymes participate in regulated SUMO-conjugation and SUMO-deconjugation pathways. Hundreds of SUMO targets are currently known, with the majority being nuclear proteins. However, the dynamic and reversible nature of this modification and the large number of natively sumoylated proteins in eukaryotic proteomes makes molecular dissection of sumoylation in eukaryotic cells challenging. Here, we have reconstituted a complete mammalian SUMO-conjugation cascade in Escherichia coli cells that involves a functional SUMO E3 ligase, which effectively biases the sumoylation of both native and engineered substrate proteins. Our sumo-engineered E. coli cells have several advantages including efficient protein conjugation and physiologically relevant sumoylation patterns. Overall, this system provides a rapid and controllable platform for studying the enzymology of the entire sumoylation cascade directly in living cells.  相似文献   

16.
17.
The traditional focus on the central dogma of molecular biology, from gene through RNA to protein, has now been replaced by the recognition of an additional mechanism. The new regulatory mechanism, post-translational modifications to proteins, can actively alter protein function or activity introducing additional levels of functional complexity by altering cellular and sub-cellular location, protein interactions and the outcome of biochemical reaction chains. Modifications by ubiquitin (Ub) and ubiquitin-like modifiers systems are conserved in all eukaryotic organisms. One of them, small ubiquitin-like modifier (SUMO) is present in plants. The SUMO mechanism includes several isoforms of proteins that are involved in reactions of sumoylation and de-sumoylation. Sumoylation affects several important processes in plants. Outstanding among those are responses to environmental stresses. These may be abiotic stresses, such as phosphate deficiency, heat, low temperature, and drought, or biotic stressses, as well including defense reactions to pathogen infection. Also, the regulations of flowering time, cell growth and development, and nitrogen assimilation have recently been added to this list. Identification of SUMO targets is material to characterize the function of sumoylation or desumoylation. Affinity purification and mass spectrometric identification have been done lately in plants. Further SUMO noncovalent binding appears to have function in other model organisms and SUMO interacting proteins in plants will be of interest to plant biologists who dissect the dynamic function of SUMO. This review will discuss results of recent insights into the role of sumoylation in plants.  相似文献   

18.
The Arabidopsis mutant early in short days4 (esd4) shows extreme early flowering and alterations in shoot development. We have identified ESD4 and demonstrate that it encodes a nuclear protein located predominantly at the periphery of the nucleus. ESD4 contains a segment of >200 amino acids with strong similarity to yeast and animal proteases that are specific for the protein modifier SMALL UBIQUITIN-RELATED MODIFIER (SUMO). ESD4 shows a similar function to these proteases in vitro and processes the precursor of Arabidopsis SUMO (AtSUMO) to generate the mature form. This activity of ESD4 is prevented by mutations that affect the predicted active site of the protease or the cleavage site of the AtSUMO precursor. In yeast, these proteases also recycle SUMO from conjugates, and this appears to be the major role of ESD4 in vivo. This is suggested because esd4 mutants contain less free AtSUMO and more SUMO conjugates than wild-type plants, and a transgene expressing mature SUMO at high levels enhanced aspects of the esd4 phenotype. ESD4 defines an important role for protein modification by AtSUMO in the regulation of flowering.  相似文献   

19.
SUMO (small ubiquitin-related modifier), a 12 kDa protein with distant similarity to ubiquitin, covalently binds to many proteins in eukaryotic cells. In contrast to ubiquitination, which mainly regulates proteasome-dependent degradation and protein sorting, sumoylation is known to regulate assembly and disassembly of protein complexes, protein localization and stability, and so on. SUMO is primarily localized to the nucleus, and many SUMO substrates are nuclear proteins involved in DNA transaction. However, certain roles of SUMO conjugates have been shown outside the nucleus. Particularly in budding yeast, SUMO is also localized to the bud-neck in a cell cycle-dependent manner. The first and prominent SUMO substrates are septins, evolutionally conserved proteins required for cytokinesis in yeast. Recent analysis of human septin structure would greatly facilitate the study of the functions of these SUMO conjugates. SUMO modification of septins is regulated by cell cycle-dependent nuclear transport of PIAS-type Siz1 (SUMO E3) and Ulp1 desumoylation enzyme in yeast. Domains outside the SUMO-ligase core (SP-RING) of Siz1 ensure its regulations. Furthermore, newly discovered ubiquitin ligases that specifically recognize poly-SUMO conjugates could lead to degradation of SUMO conjugates. Thus, protein modifications seem to be regulated in an unexpectedly complex manner. In this review, we focus on various regulations in yeast septin sumoylation and discuss its possible functions.  相似文献   

20.
Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号