共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Funneling auxin action: specificity in signal transduction 总被引:11,自引:0,他引:11
3.
Intracellular signal transduction pathways transmit signals from the cell surface to various intracellular destinations, such
as cytoskeleton and nucleus through a cascade of protein-protein interactions and activation events, leading to phenotypic
changes such as cell proliferation, differentiation, and death. Over the past two decades, numerous signaling proteins and
signal transduction pathways have been discovered and characterized. There are two major classes of signaling proteins: phosphoproteins
(e.g., mitogen-activated protein kinases) and guanosine triphosphatases (GTPases; e.g., Ras and G proteins). They both function
as molecular switches by addition and removal of one or more high-energy phosphate groups. This review discusses developments
that seek to quantify the signal transduction processes with kinetic analysis and mathematical modeling of the signaling phosphoproteins
and GTPases. These studies have provided insights into the sensitivity and specificity amplification of biological signals
in integrated systems. 相似文献
4.
5.
Mammalian melatonin receptors: molecular biology and signal transduction 总被引:22,自引:0,他引:22
6.
Tsai MD 《Structure (London, England : 1993)》2002,10(7):887-888
The structure of the FHA domain of the Chfr mitotic checkpoint protein described in this issue of Structure represents one of only a few known structures of this newly discovered phosphoprotein binding domain with diverse function and specificity. 相似文献
7.
《Expert review of proteomics》2013,10(1):103-116
The study of signal transduction provides fundamental information regarding the regulation of all biologic processes that support the normal function of life. Functional proteomics, a rapidly emerging discipline that aims to understand the expression, function and regulation of the entire set of proteins in a given cell type, tissue or organism, offers unprecedented opportunity for signal transduction research in terms of understanding cellular behavior and regulation at the systems level. Indeed, swift progress in the area of proteomics has demonstrated the major impact of proteomic approaches on signal transduction and biomedical research. In this review, recent and innovative applications of functional proteomics in determining changes in protein contents, modifications, activities and interactions underpinning signaling transduction pathways are discussed. 相似文献
8.
9.
Skerker JM Perchuk BS Siryaporn A Lubin EA Ashenberg O Goulian M Laub MT 《Cell》2008,133(6):1043-1054
Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions. 相似文献
10.
胰岛素样生长因子1受体(IGF1R)与胰岛素受体(IR)结构同源,它们信号转导的细胞内底物相似,但二者介导的生物学效应却存在的一定的差异,本文集中介绍了两种受体的激活机制及信号转导特异性方面的研究进展。 相似文献
11.
James F. Riordan 《Cellular and molecular neurobiology》1995,15(6):637-651
Summary 1. Angiotensin II is a well-known vasopressive octapeptide that is the principal end-product of the renin-angiotensin system. In addition to its tonic effect on vascular smooth muscle cells, it also stimulates aldosterone secretion from the adrenals and promotes sodium reabsorption through renal tubular cells.2. These physiological functions have been appreciated for some time, but as details of the molecular and cell biology of the angiotensin response mechanism become understood, it is increasingly apparent that the hormone has a much broader repertoire. Its functional variability is made possible by (i) different enzymatic routes for its generation, (ii) different receptors distributed in different tissues, (iii) different mechanisms for receptor regulation, and (iv) different signal transduction pathways.3. This insight is the direct consequence of advances in pharmacology that led first to inhibitors of angiotensin converting enzyme and later to angiotensin II receptor antagonists. This review looks at the current status of angiotensin biochemistry and physiology and provides a basis for anticipation of future developments. 相似文献
12.
A. M. Hetherington 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1998,353(1374):1489-1494
Stomatal guard cells have proven to be an attractive system for dissecting the mechanisms of stimulus-response coupling in plants. In this review we focus on the intracellular signal transduction pathways by which extracellular signals bring about closure and opening of the stomatal pore. It is proposed that guard cell signal transduction pathways may be organized into functional arrays or signalling cassettes that contain elements common to a number of converging signalling pathways. The purpose of these signalling cassettes may be to funnel extracellular signals down onto the ion transporters that control the fluxes of ions that underlie stomatal movements. Evidence is emerging that specificity in guard cell signalling may be, in part, encoded in complex spatio-temporal patterns of increases in the concentration of cytosolic-free calcium ([Ca2+]cyt). It is suggested that oscillations in [Ca2+]cyt may generate calcium signatures that encode information concerning the stimulus type and strength. New evidence is presented that suggests that these calcium signatures may integrate information when many stimuli are present. 相似文献
13.
Pharmacological activities of branched-chain amino acids: specificity of tissue and signal transduction 总被引:1,自引:0,他引:1
Nishitani S Ijichi C Takehana K Fujitani S Sonaka I 《Biochemical and biophysical research communications》2004,313(2):387-389
Branched-chain amino acid (BCAA: Leu, Ile, and Val) mixture has been used for treatment of hypoalbuminemia in patients with decompensated liver cirrhosis in Japan. It has been known that BCAA, especially leucine, activates mTOR signals and inhibition of protein degradation results in promoting protein synthesis in vitro. Furthermore, leucine activates glycogen synthase via mTOR signals in L6 cell, but not hepatocyte, and it has been shown that leucine improved glucose metabolism in normal and cirrhosis model rats. In this review, it will be proposed about the pharmacological activity of branched-chain amino acids, mainly leucine, on tissue specificity of cirrhotic disease. 相似文献
14.
Biological functions typically involve complex interacting molecular networks, with numerous feedback and regulation loops. How the properties of the system are affected when one, or several of its parts are modified is a question of fundamental interest, with numerous implications for the way we study and understand biological processes and treat diseases. This question can be rephrased in terms of relating genotypes to phenotypes: to what extent does the effect of a genetic variation at one locus depend on genetic variation at all other loci? Systematic quantitative measurements of epistasis – the deviation from additivity in the effect of alleles at different loci – on a given quantitative trait remain a major challenge. Here, we take a complementary approach of studying theoretically the effect of varying multiple parameters in a validated model of molecular signal transduction. To connect with the genotype/phenotype mapping we interpret parameters of the model as different loci with discrete choices of these parameters as alleles, which allows us to systematically examine the dependence of the signaling output – a quantitative trait – on the set of possible allelic combinations. We show quite generally that quantitative traits behave approximately additively (weak epistasis) when alleles correspond to small changes of parameters; epistasis appears as a result of large differences between alleles. When epistasis is relatively strong, it is concentrated in a sparse subset of loci and in low order (e.g. pair-wise) interactions. We find that focusing on interaction between loci that exhibit strong additive effects is an efficient way of identifying most of the epistasis. Our model study defines a theoretical framework for interpretation of experimental data and provides statistical predictions for the structure of genetic interaction expected for moderately complex biological circuits. 相似文献
15.
Jagadeesh G 《Indian journal of experimental biology》1998,36(12):1171-1194
The renin-angiotensin-aldosterone system (RAAS) plays an important role in both the short-term and long-term regulation of arterial blood pressure, and fluid and electrolyte balance. The RAAS is a dual hormone system, serving as both a circulating and a local tissue hormone system (i.e., local mediator) as well as neurotransmitter or neuromediator functions in CNS. Control of blood pressure by the RAAS is exerted through multiple actions of angiotensin II, a small peptide which is a potent vasoconstrictor hormone implicated in the genesis and maintenance of hypertension. Hypertension is a primary risk factor associated with cardiovascular, cerebral and renal vascular disease. One of the approaches to the treatment of hypertension, which may be considered as a major scientific advancement, involves the use of drugs affecting the RAAS. Pharmacological interruption of the RAAS was initially employed in the late 1970s with the advent of the angiotensin converting enzyme (ACE) inhibitor, captopril. ACE inhibitors have since gained widespread use in the treatment of mild to moderate hypertension, congestive heart failure, myocardial infarction, and diabetic nephropathy. As the roles of the RAAS in the pathophysiology of several diseases was explored, so did the realization of the importance of inhibiting the actions of angiotensin II. Although ACE inhibitors are well tolerated, they are also involved in the activation of bradykinin, enkephalins, and other biologically active peptides. These actions result in adverse effects such as cough, increased bronchial reactivity, and angioedema. Thus, the goal of achieving a more specific blockade of the effects of angiotensin II than is possible with ACE inhibition. The introduction of the nonpeptide angiotensin II receptor antagonist losartan in 1995 marked the achievement of this objective and has opened new vistas in understanding and controlling the additional biological effects of angiotensin II. Complementary investigations into the cloning and sequencing of angiotensin II receptors have demonstrated the existence of a family of angiotensin II receptor subtypes. Two major types of angiotensin II receptors have been identified in humans. The type 1 receptor (AT1) mediates most known effects of angiotensin II. The type 2 receptor (AT2), for which no precise function was known in the past, has gained importance recently and new mechanisms of intracellular signalling have been proposed. This review presents recent advances in angiotensin II receptor pharmacology, molecular biology, and signal transduction, with particular reference to the AT1 receptor. Excellent reviews have appeared recently on this subject. 相似文献
16.
Morandell S Stasyk T Grosstessner-Hain K Roitinger E Mechtler K Bonn GK Huber LA 《Proteomics》2006,6(14):4047-4056
Protein phosphorylation is a key regulatory mechanism of cellular signalling processes. The analysis of phosphorylated proteins and the characterisation of phosphorylation sites under different biological conditions are some of the most challenging tasks in current proteomics research. Reduction of the sample complexity is one major step for the analysis of low-abundance kinase substrates, which can be achieved by various subcellular fractionation techniques. One strategy is the enrichment of phosphorylated proteins or peptides by immunoprecipitation or chromatography, e.g. immobilised metal affinity chromatography, prior to analysis. 2-DE gels are powerful tools for the analysis of phosphoproteins when combined with new multiplexing techniques like DIGE, phosphospecific stains, autoradiography or immunoblotting. In addition, several gel-free methods combining chromatography with highly sensitive MS have been successfully applied for the analysis of complex phosphoproteomes. Recently developed approaches like KESTREL or 'chemical genetics' and also protein microarrays offer new possibilities for the identification of specific kinase targets. This review summarises various strategies for the analyses of phosphoproteins with a special focus on the identification of novel kinase substrates. 相似文献
17.
In adult rat pinealocytes, acetylcholine activates nicotinic receptors whose stimulation causes a depolarization of the cells, opening of voltage-gated cation channels of the L-type and subsequent increase in the intracellular calcium ion concentration. These events trigger a release of glutamate that, by its action on metabotropic glutamate type 3 receptors, activates an inhibitory cyclic AMP cascade and suppresses norepinephrine-induced melatonin biosynthesis. The nicotinic response is fully developed in the third postnatal week. Prior to this timepoint, rat pinealocytes possess functional muscarinic receptors whose activation causes a rise in the intracellular calcium ion concentration through a calcium release from thapsigargin-sensitive intracellular calcium stores and an opening of store-operated calcium channels. This cascade may influence tissue differentiation and maturation of the melatonin pathway. The demonstration of functional cholinoreceptors and the ontogenetic switch from muscarinic to nicotinic signalling in rat pinealocytes supports the concept that pineal functions in mammals are influenced by neuronal inputs other than the sympathetic innervation which serves as the major regulatory system. 相似文献
18.
Sriram MG 《Briefings in bioinformatics》2003,4(3):236-245
Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships. 相似文献
19.