首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this paper, we analyse the interaction of different species of birds and mosquitoes on the dynamics of West Nile virus (WNV) infection. We study the different transmission efficiencies of the vectors and birds and the impact on the possible outbreaks. We show that the basic reproductive number is the weighted mean of the basic reproductive number of each species, weighted by the relative abundance of its population in the location. These results suggest a possible explanation of why there are no outbreaks of WNV in Mexico.  相似文献   

3.
In this paper, we analyse the interaction of different species of birds and mosquitoes on the dynamics of West Nile virus (WNV) infection. We study the different transmission efficiencies of the vectors and birds and the impact on the possible outbreaks. We show that the basic reproductive number is the weighted mean of the basic reproductive number of each species, weighted by the relative abundance of its population in the location. These results suggest a possible explanation of why there are no outbreaks of WNV in Mexico.  相似文献   

4.
The epidemiology of vector‐borne pathogens is largely determined by the host‐choice behaviour of their vectors. Here, we investigate whether a Plasmodium infection renders the host more attractive to host‐seeking mosquitoes. For this purpose, we work on a novel experimental system: the avian malaria parasite Plasmodium relictum, and its natural vector, the mosquito Culex pipiens. We provide uninfected mosquitoes with a choice between an uninfected bird and a bird undergoing either an acute or a chronic Plasmodium infection. Mosquito choice is assessed by microsatellite typing of the ingested blood. We show that chronically infected birds attract significantly more vectors than either uninfected or acutely infected birds. Our results suggest that malaria parasites manipulate the behaviour of uninfected vectors to increase their transmission. We discuss the underlying mechanisms driving this behavioural manipulation, as well as the broader implications of these effects for the epidemiology of malaria.  相似文献   

5.
West Nile virus (WNV) is a re-emerging pathogen responsible for fatal outbreaks of meningoencephalitis in humans. Recent research using a mouse model of infection has indicated that specific chemokines and chemokine receptors help mediate the host response to WNV acting by at least three mechanisms: control of early neutrophil recruitment to the infection site (Cxcr2), control of monocytosis in blood (Ccr2) and control of leukocyte movement from blood to brain (Cxcr4, Cxcr3, Cxcl10 and possibly Ccr5). CCR5 also appears to be important in human infection, since individuals genetically deficient in this receptor have increased risk of symptomatic disease once infected. These findings provide detailed insight into non-redundant chemokine roles in organ-specific leukocyte recruitment during infection, and emphasize the importance of the balance between pathogen control and immunopathology in determining overall clinical outcome.  相似文献   

6.
There are more than 300 avian species that can transmit West Nile virus (WNv). In general, the corvid and non-corvid families of birds have different responses to the virus, with corvids suffering a higher disease-induced mortality rate. By taking both corvids and non-corvids as the primary reservoir hosts and mosquitoes as vectors; we formulate and study a system of ordinary differential equations to model a single season of the transmission dynamics of WNv in the mosquito–bird cycle. We calculate the basic reproduction number and analyze the existence and stability of the equilibria. The existence of a backward bifurcation gives a further sub-threshold condition beyond the basic reproduction number for the spread of the virus. We also discuss the role of corvids and non-corvids in spreading the virus. We conclude that knowledge of the relative abundance of corvid bird species and other mammals assist us in accurate estimation of the epidemic of WNv.  相似文献   

7.
West Nile virus (WNV), from the Flaviviridae family, is a re-emerging zoonotic pathogen of medical importance. In humans, WNV infection may cause life-threatening meningoencephalitis or long-term neurologic sequelae. WNV is transmitted by Culex spp. mosquitoes and both the arthropod vector and the mammalian host are equipped with antiviral innate immune mechanisms sharing a common phylogeny. As far as the current evidence is able to demonstrate, mosquitoes primarily rely on RNA interference, Toll, Imd and JAK-STAT signalling pathways for limiting viral infection, while mammals are provided with these and other more complex antiviral mechanisms involving antiviral effectors, inflammatory mediators, and cellular responses triggered by highly specialized pathogen detection mechanisms that often resemble their invertebrate ancestry. This mini-review summarizes our current understanding of how the innate immune systems of the vector and the mammalian host react to WNV infection and shape its pathogenesis.  相似文献   

8.
9.
Raptor mortality due to West Nile virus in the United States, 2002   总被引:1,自引:0,他引:1  
West Nile virus (WNV) has affected many thousands of birds since it was first detected in North America in 1999, but the overall impact on wild bird populations is unknown. In mid-August 2002, wildlife rehabilitators and local wildlife officials from multiple states began reporting increasing numbers of sick and dying raptors, mostly red-tailed hawks (Buteo jamaicensis) and great horned owls (Bubo virginianus). Commonly reported clinical signs were nonspecific and included emaciation, lethargy, weakness, inability to perch, fly or stand, and nonresponse to danger. Raptor carcasses from 12 states were received, and diagnostic evaluation of 56 raptors implicated WNV infection in 40 (71%) of these cases. Histologically, nonsuppurative encephalitis and myocarditis were the salient lesions (79% and 61%, respectively). Other causes of death included lead poisoning, trauma, aspergillosis, and Salmonella spp. and Clostridium spp. infections. The reason(s) for the reported increase in raptor mortality due to WNV in 2002 compared with the previous WNV seasons is unclear, and a better understanding of the epizootiology and pathogenesis of the virus in raptor populations is needed.  相似文献   

10.
Populations of greater sage-grouse (Centrocercus urophasianus) have declined 45-80% in North America since 1950. Although much of this decline has been attributed to habitat loss, recent field studies have indicated that West Nile virus (WNV) has had a significant negative impact on local populations of grouse. We confirm the susceptibility of greater sage-grouse to WNV infection in laboratory experimental studies. Grouse were challenged by subcutaneous injection of WNV (10(3.2) plaque-forming units [PFUs]). All grouse died within 6 days of infection. The Kaplan-Meier estimate for 50% survival was 4.5 days. Mean peak viremia for nonvaccinated birds was 10(6.4) PFUs/ml (+/-10(0.2) PFUs/ml, standard error of the mean [SEM]). Virus was shed cloacally and orally. Four of the five vaccinated grouse died, but survival time was increased (50% survival=9.5 days), with 1 grouse surviving to the end-point of the experiment (14 days) with no signs of illness. Mean peak viremia for the vaccinated birds was 10(2.3) PFUs/ml (+/-10(0.6) PFUs/ml, SEM). Two birds cleared the virus from their blood before death or euthanasia. These data emphasize the high susceptibility of greater sage-grouse to infection with WNV.  相似文献   

11.
Adult mosquitoes were previously collected and tested for West Nile virus during an intense WNV outbreak in 2003-2004 along the Cache la Poudre River in Colorado, USA. A subset of these mosquitoes was also tested for infection with trypanosomatids using nested PCR to amplify 18S rRNA. Of the 69 pools of Culex pipiens that were screened for both pathogens, 4.3% were positive for WNV and 11.6% tested positive for trypanosomes; no pools were found to be co-infected with both pathogens. One hundred and forty-three pools of Culex tarsalis, considered to be the principal WNV vector in this area, were tested in the same manner. 7.7% were positive for WNV and 20.3% of these pools tested positive for trypanosomes. Five pools of C. tarsalis were found to be co-infected with both pathogens, which was approximately 2.2 times more frequent than would be expected if these pathogens are independent of each other. Sequencing and maximum parsimony analysis of 18S rRNA revealed that four of the isolates arise in or near clades of described avian trypanosomes, likely indicating that these are vectored pathogens between birds and mosquitoes. Unexpectedly, the majority (24/28, 86%) of our positive samples form their own separate clade within the order Trypanosomatida with 100% bootstrap support. We have identified a potential new clade of trypanosomatids that exist within important mosquito vectors and discuss the potential ecological connections between these trypanosomes, arboviruses and mosquitoes.  相似文献   

12.
Male and nulliparous female mosquitoes were surveyed for evidence of vertical WNV infection in East Baton Rouge Parish, Louisiana. Adult male mosquitoes collected by trapping and aspiration, and adult male and nulliparous female mosquitoes reared from field‐collected larvae were tested. Adult male Culex spp., female Aedes albopictus (Skuse), and female Culex quinquifasciatus Say mosquitoes that were collected as larvae were test‐positive for WNV RNA. Infectious WNV was detected using virus isolation in field‐collected male Aedes triseriatus Say and Culex salinarius Coquillett; these data represent the first field evidence of vertical transmission of WNV in Ae. triseriatus and Cx. salinarius.  相似文献   

13.
The mosquito Culex pipiens pipiens is a documented vector of West Nile virus (WNV, Flaviviridae, Flavivirus). Our laboratory colony of C. p. pipiens, however, was repeatedly refractory to experimental transmission of WNV. Our goal was to identify if a cellular process was inhibiting virus infection of the midgut. We examined midguts of mosquitoes fed control and WNV-infected blood meals. Three days after feeding, epithelial cells from abdominal midguts of mosquitoes fed on WNV fluoresced under an FITC filter following Acridine Orange staining, indicating apoptosis in this region. Epithelial cells from experimental samples examined by TEM exhibited ultrastructural changes consistent with apoptosis, including shrinkage and detachment from neighbors, heterochromatin condensation, nuclear degranulation, and engulfment of apoptotic bodies by adjacent cells. Virions were present in cytoplasm and within cytoplasmic vacuoles of apoptotic cells. No apoptosis was detected by TEM in control samples. In parallel, we used Vero cell plaque assays to quantify infection after 7 and 10 day extrinsic incubation periods and found that none of the mosquitoes (0/55 and 0/10) which imbibed infective blood were infected. We propose that programmed cell death limits the number of WNV-infected epithelial cells and inhibits disseminated viral infections from the mosquito midgut.  相似文献   

14.
Studies with mice lacking the common plasma membrane receptor for type I interferon (IFN-αβR(-)(/)(-)) have revealed that IFN signaling restricts tropism, dissemination, and lethality after infection with West Nile virus (WNV) or several other pathogenic viruses. However, the specific functions of individual IFN subtypes remain uncertain. Here, using IFN-β(-)(/)(-) mice, we defined the antiviral and immunomodulatory function of this IFN subtype in restricting viral infection. IFN-β(-)(/)(-) mice were more vulnerable to WNV infection than wild-type mice, succumbing more quickly and with greater overall mortality, although the phenotype was less severe than that of IFN-αβR(-)(/)(-) mice. The increased susceptibility of IFN-β(-)(/)(-) mice was accompanied by enhanced viral replication in different tissues. Consistent with a direct role for IFN-β in control of WNV replication, viral titers in ex vivo cultures of macrophages, dendritic cells, fibroblasts, and cerebellar granule cell neurons, but not cortical neurons, from IFN-β(-)(/)(-) mice were greater than in wild-type cells. Although detailed immunological analysis revealed no major deficits in the quality or quantity of WNV-specific antibodies or CD8(+) T cells, we observed an altered CD4(+) CD25(+) FoxP3(+) regulatory T cell response, with greater numbers after infection. Collectively, these results suggest that IFN-β controls WNV pathogenesis by restricting infection in key cell types and by modulating T cell regulatory networks.  相似文献   

15.
Due to error-prone replication, RNA viruses exist within hosts as a heterogeneous population of non-identical, but related viral variants. These populations may undergo bottlenecks during transmission that stochastically reduce variability leading to fitness declines. Such bottlenecks have been documented for several single-host RNA viruses, but their role in the population biology of obligate two-host viruses such as arthropod-borne viruses (arboviruses) in vivo is unclear, but of central importance in understanding arbovirus persistence and emergence. Therefore, we tracked the composition of West Nile virus (WNV; Flaviviridae, Flavivirus) populations during infection of the vector mosquito, Culex pipiens quinquefasciatus to determine whether WNV populations undergo bottlenecks during transmission by this host. Quantitative, qualitative and phylogenetic analyses of WNV sequences in mosquito midguts, hemolymph and saliva failed to document reductions in genetic diversity during mosquito infection. Further, migration analysis of individual viral variants revealed that while there was some evidence of compartmentalization, anatomical barriers do not impose genetic bottlenecks on WNV populations. Together, these data suggest that the complexity of WNV populations are not significantly diminished during the extrinsic incubation period of mosquitoes.  相似文献   

16.
We formulate and analyze a delay differential equation model for the transmission of West Nile virus between vector mosquitoes and avian hosts that incorporates maturation delay for mosquitoes. The maturation time from eggs to adult mosquitoes is sensitive to weather conditions, in particular the temperature, and the model allows us to investigate the impact of this maturation time on transmission dynamics of the virus among mosquitoes and birds. Numerical results of the model show that a combination of the maturation time and the vertical transmission of the virus in mosquitoes has substantial influence on the abundance and number of infection peaks of the infectious mosquitoes.  相似文献   

17.
We studied the effects of natural and/or experimental infections of West Nile virus (WNV) in five raptor species from July 2002 to March 2004, including American kestrels (Falco sparverius), golden eagles (Aquila chrysaetos), red-tailed hawks (Buteo jamaicensis), barn owls (Tyto alba), and great horned owls (Bubo virginianus). Birds were infected per mosquito bite, per os, or percutaneously by needle. Many experimentally infected birds developed mosquito-infectious levels of viremia (>10(5) WNV plaque forming units per ml serum) within 5 days postinoculation (DPI), and/ or shed virus per os or per cloaca. Infection of organs 15-27 days postinoculation was infrequently detected by virus isolation from spleen, kidney, skin, heart, brain, and eye in convalescent birds. Histopathologic findings varied among species and by method of infection. The most common histopathologic lesions were subacute myocarditis and encephalitis. Several birds had a more acute, severe disease condition represented by arteritis and associated with tissue degeneration and necrosis. This study demonstrates that raptor species vary in their response to WNV infection and that several modes of exposure (e.g., oral) may result in infection. Wildlife managers should recognize that, although many WNV infections are sublethal to raptors, subacute lesions could potentially reduce viability of populations. We recommend that raptor handlers consider raptors as a potential source of WNV contamination due to oral and cloacal shedding.  相似文献   

18.
West Nile virus (WNV) is transmitted to vertebrate hosts primarily by infected Culex mosquitoes. Transmission of arboviruses by the bite of infected mosquitoes can potentiate infection in hosts compared to viral infection by needle inoculation. Here we examined the effect of mosquito transmission on WNV infection and systematically investigated multiple factors that differ between mosquito infection and needle inoculation of WNV. We found that mice infected with WNV through the bite of a single infected Culex tarsalis mosquito exhibited 5- to 10-fold-higher viremia and tissue titers at 24 and 48 h postinoculation and faster neuroinvasion than mice given a median mosquito-inoculated dose of WNV (10(5) PFU) by needle. Mosquito-induced enhancement was not due to differences in inoculation location, because additional intravenous inoculation of WNV did not enhance viremia or tissue titers. Inoculation of WNV into a location where uninfected mosquitoes had fed resulted in enhanced viremia and tissue titers in mice similar to those in mice infected by a single infected mosquito bite, suggesting that differences in where virus is deposited in the skin and in the virus particle itself were not responsible for the enhanced early infection in mosquito-infected mice. In addition, inoculation of mice with WNV mixed with salivary gland extract (SGE) led to higher viremia, demonstrating that mosquito saliva is the major cause of mosquito-induced enhancement. Enhanced viremia was not observed when SGE was inoculated at a distal site, suggesting that SGE enhances WNV replication by exerting a local effect. Furthermore, enhancement of WNV infection still occurred in mice with antibodies against mosquito saliva. In conclusion, saliva from C. tarsalis is responsible for enhancement of early WNV infection in vertebrate hosts.  相似文献   

19.
20.
West Nile virus (WNV) has spread throughout the United States and Canada and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to acute flaccid paralysis and lethal encephalitis. No therapy or vaccine is currently approved for use in humans. Using high-throughput screening assays that included a luciferase expressing WNV subgenomic replicon and an NS1 capture enzyme-linked immunosorbent assay, we evaluated a chemical library of over 80,000 compounds for their capacity to inhibit WNV replication. We identified 10 compounds with strong inhibitory activity against genetically diverse WNV and Kunjin virus isolates. Many of the inhibitory compounds belonged to a chemical family of secondary sulfonamides and have not been described previously to inhibit WNV or other related or unrelated viruses. Several of these compounds inhibited WNV infection in the submicromolar range, had selectivity indices of greater than 10, and inhibited replication of other flaviviruses, including dengue and yellow fever viruses. One of the most promising compounds, AP30451, specifically blocked translation of a yellow fever virus replicon but not a Sindbis virus replicon or an internal ribosome entry site containing mRNA. Overall, these compounds comprise a novel class of promising inhibitors for therapy against WNV and other flavivirus infections in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号