首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of genetic correlations between traits that ostensibly channel the path of evolution away from the direction of natural selection require information on key aspects such as ancestral phenotypes, the duration of adaptive evolution, the direction of natural selection, and genetic covariances. In this study we provide such information in a frog population system. We studied adaptation in life history traits to pool drying in frog populations on islands of known age, which have been colonized from a mainland population. The island populations show strong local adaptation in development time and size. We found that the first eigenvector of the variance–covariance matrix (g max) had changed between ancestral mainland populations and newly established island populations. Interestingly, there was no divergence in g max among island populations that differed in their local adaptation in development time and size. Thus, a major change in the genetic covariance of life-history traits occurred in the colonization of the island system, but subsequent local adaptation in development time took place despite the constraints imposed by the genetic covariance structure.  相似文献   

2.

Background

One of the major recent advances in evolutionary biology is the recognition that evolutionary interactions between species are substantially differentiated among geographic populations. To date, several authors have revealed natural selection pressures mediating the geographically-divergent processes of coevolution. How local, then, is the geographic structuring of natural selection in coevolutionary systems?

Results

I examined the spatial scale of a "geographic selection mosaic," focusing on a system involving a seed-predatory insect, the camellia weevil (Curculio camelliae), and its host plant, the Japanese camellia (Camellia japonica). In this system, female weevils excavate camellia fruits with their extremely-long mouthparts to lay eggs into seeds, while camellia seeds are protected by thick pericarps. Quantitative evaluation of natural selection demonstrated that thicker camellia pericarps are significantly favored in some, but not all, populations within a small island (Yakushima Island, Japan; diameter ca. 30 km). At the extreme, camellia populations separated by only several kilometers were subject to different selection pressures. Interestingly, in a population with the thickest pericarps, camellia individuals with intermediate pericarp thickness had relatively high fitness when the potential costs of producing thick pericarps were considered. Also importantly, some parameters of the weevil - camellia interaction such as the severity of seed infestation showed clines along temperature, suggesting the effects of climate on the fine-scale geographic differentiation of the coevolutionary processes.

Conclusion

These results show that natural selection can drive the geographic differentiation of interspecific interactions at surprisingly small spatial scales. Future studies should reveal the evolutionary/ecological outcomes of the "fine scale geographic mosaics" in biological communities.  相似文献   

3.
Jie Tang  Fei Zhang  Weihua Cui  Jiong Ma 《Planta》2014,239(6):1299-1307

Main conclusion

Presenting a basic framework for using MLST to characterize Spirodela, Landoltia and in particular Lemna strains at the species level, and to study population genetics and evolution history of natural duckweed populations.

Abstract

Duckweed is widely used in environmental biotechnology and has recently emerged as a potential feedstock for biofuels due to its high growth rate and starch content. The genetic diversity and composition of a natural duckweed population in genera Spirodela, Landoltia and Lemna from Lake Tai, China, were investigated using probabilistic analysis of multilocus sequence typing (MLST). The 78 strains were categorized into five lineages, among which strains representing L. aequinoctialis and S. polyrhiza were predominant. Among the five lineages, interlineage transfers of markers were infrequent and no recombination was statistically detected. Tajima’s D tests determined that all loci are subject to population bottlenecks, which is likely one of the main reasons for the low genetic diversity observed within the lineages. Interestingly, strains of L. turionifera are found to contain small admixture from L. minor, providing rare evidence of transfer of genetic materials in duckweed. This was discussed with respect to the hypothesis that a cross of these two gave rise to L. japonica. Moreover, the conventional maximum-likelihood phylogenetic analysis clearly recognized all the species in the three genera with high bootstrap supports. In conclusion, this work offers a basic framework for using MLST to characterize Spirodela, Landoltia and in particular Lemna strains at the species level, and to study population genetics and evolution history of natural duckweed populations.  相似文献   

4.

Key message

ISSR characterization of Chukrasia populations from the natural range revealed two distinct groups of populations consonant with morphological differentiation. Results suggest the current taxonomic classification of the genus should be reviewed.

Abstract

There are different views as to whether the genus Chukrasia (Meliaceae) consists of one species, C. tabularis, or two species C. tabularis and C. velutina. Despite a clear pattern of variation in many morphological characteristics such as leaves and bark, some authors regard the latter merely an ecotype of the former in seasonal forest. In the present study, we used ISSR markers to determine the genetic diversity and population structure among 23 Chukrasia subpopulations from across the natural range in Asia. Molecular analysis clearly differentiated two distinct groups of subpopulations, corresponding to the putative species, as well as well-defined subpopulations corresponding to geographic regions within the two groups. The molecular results are in concordance with morphological differentiation and corresponded to the two recognized taxa. The present study suggests that current taxonomic classification of the genus Chukrasia should be reviewed.  相似文献   

5.

Key message

We conducted molecular characterization of Nicaraguan Pinus tecunumanii populations using microsatellite markers. Populations possess considerable genetic variation but there are risks associated with inbreeding and population fragmentation.

Abstract

We carried out a molecular characterization of three natural populations of Pinus tecunumanii using nine microsatellite markers. All studied populations occur in Nicaragua, where the species has declined primarily due to human-influenced factors. The results showed that there is a high amount of genetic variation in populations (expected heterozygosities 0.775–0.841), populations do not show significant differentiation (mean F ST 0.0073), apparently due to frequent gene flow or a more continuous distribution and homogenous genetic composition in the past, and inbreeding is common in all populations (F IS 0.705–0.780). The Structure analysis revealed that there is no evident clustering pattern among P. tecunumanii individuals. Although all studied populations possess a considerable amount of genetic variation, risks associated with inbreeding and population fragmentation should be acknowledged and a conservation strategy developed to safeguard the genetic resources of P. tecunumanii.  相似文献   

6.

Key message

Efficient Agrobacterium -mediated genetic transformation for investigation of genetic and molecular mechanisms involved in inflorescence architectures in Cornus species.

Abstract

Cornus canadensis is a subshrub species in Cornus, Cornaceae. It has recently become a favored non-model plant species to study genes involved in development and evolution of inflorescence architectures in Cornaceae. Here, we report an effective protocol of plant regeneration and genetic transformation of C. canadensis. We use young inflorescence buds as explants to efficiently induce calli and multiple adventitious shoots on an optimized induction medium consisting of basal MS medium supplemented with 1 mg/l of 6-benzylaminopurine and 0.1 mg/l of 1-naphthaleneacetic acid. On the same medium, primary adventitious shoots can produce a large number of secondary adventitious shoots. Using leaves of 8-week-old secondary shoots as explants, GFP as a reporter gene controlled by 35S promoter and hygromycin B as the selection antibiotic, a standard procedure including pre-culture of explants, infection, co-cultivation, resting and selection has been developed to transform C. canadensis via Agrobacterium strain EHA105-mediated transformation. Under a strict selection condition using 14 mg/l hygromycin B, approximately 5 % explants infected by Agrobacterium produce resistant calli, from which clusters of adventitious shoots are induced. On an optimized rooting medium consisting of basal MS medium supplemented with 0.1 mg/l of indole-3-butyric acid and 7 mg/l hygromycin B, most of the resistant shoots develop adventitious roots to form complete transgenic plantlets, which can grow normally in soil. RT-PCR analysis demonstrates the expression of GFP transgene. Green fluorescence emitted by GFP is observed in transgenic calli, roots and cells of transgenic leaves under both stereo fluorescence microscope and confocal microscope. The success of genetic transformation provides an appropriate platform to investigate the molecular mechanisms by which the various inflorescence forms are developed in Cornus plants.  相似文献   

7.
Different hormonal therapies are used for estrogen receptor positive (ER+) breast cancers, being the third-generation of aromatase inhibitors (AIs), an effective alternative to the classical tamoxifen. AIs inhibit the enzyme aromatase, which is responsible for catalyzing the conversion of androgens to estrogens. In this study, it was evaluated the effects of several steroidal AIs, namely 3β-hydroxyandrost-4-en-17-one (1), androst-4-en-17-one (12), 4α,5α-epoxyandrostan-17-one (13a) and 5α-androst-2-en-17-one (16), on cell proliferation, cell cycle progression and cell death in an ER+ aromatase-overexpressing human breast cancer cell line (MCF-7aro). All AIs induced a decrease in cell proliferation and these anti-proliferative effects were due to a disruption in cell cycle progression and cell death, by apoptosis. AIs 1 and 16 caused cell cycle arrest in G0/G1, while AIs 12 and 13a induced an arrest in G2/M. Moreover, it was observed that these AIs induced apoptosis by different pathways, since AIs 1, 12 and 13a activated the apoptotic mitochondrial pathway, while AI 16 induced apoptosis through activation of caspase-8. These results are important for the elucidation of the cellular effects of steroidal AIs on breast cancer cells and will also highlight the importance of AIs as inducers of apoptosis in hormone-dependent breast cancers.  相似文献   

8.

Background

Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders.

Results

At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects.

Conclusion

While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain.  相似文献   

9.
Phylogenetic studies have demonstrated that Schefflera, the largest genus of Araliaceae, is grossly polyphyletic, comprising five distinct clades within the family. In an effort to establish monophyletic genera among the elements that currently comprise Schefflera, the genus Plerandra is expanded to encompass all of the members of one of these clades. In this synoptical revision, a new infrageneric classification is presented (along with a key) in which six subgenera are recognized. Four of these subgenera are newly described (Plerandra subgenera Canacoschefflera, Costatae, Gabriellarum, and Veilloniorum) and a fifth represents a new combination (Plerandra subg. Dizygotheca). A total of 33 species (one with two subspecies) are accepted, one of which is newly described (P. veilloniorum), and 22 new combinations are made (P. actinostigma, P. baillonii, P. cabalionii, P. costata, P. crassipes, P. elegantissima, P. elongata, P. emiliana, P. gabriellae, P. leptophylla, P. nono, P. osyana, P. osyana subsp. toto, P. pachyphylla, P. pancheri, P. plerandroides, P. polydactylis, P. reginae, P. seemanniana, P. tannae, P. vanuatua, P. veitchii). Neotypes are provided for six accepted names and one heterotypic synonym, and lectotypes are designated for 13 accepted names and 16 heterotypic synonyms. For each accepted species, full synonymy is provided along with geographic range and notes.  相似文献   

10.
Understanding the evolutionary causes of phenotypic variation among populations has long been a central theme in evolutionary biology. Several factors can influence phenotypic divergence, including geographic isolation, genetic drift, divergent natural or sexual selection, and phenotypic plasticity. But the relative importance of these factors in generating phenotypic divergence in nature is still a tantalizing and unresolved problem in evolutionary biology. The origin and maintenance of phenotypic divergence is also at the root of many ongoing debates in evolutionary biology, such as the extent to which gene flow constrains adaptive divergence ( Garant et al. 2007 ) and the relative importance of genetic drift, natural selection, and sexual selection in initiating reproductive isolation and speciation ( Coyne & Orr 2004 ). In this issue, Wang & Summers (2010) test the causes of one of the most fantastic examples of phenotypic divergence in nature: colour pattern divergence among populations of the strawberry poison frog (Dendrobates pumilio) in Panama and Costa Rica ( Fig. 1 ). This study provides a beautiful example of the use of the emerging field of landscape genetics to differentiate among hypotheses for phenotypic divergence. Using landscape genetic analyses, Wang & Summers were able to reject the hypotheses that colour pattern divergence is due to isolation‐by‐distance (IBD) or landscape resistance. Instead, the hypothesis left standing is that colour divergence is due to divergent selection, in turn driving reproductive isolation among populations with different colour morphs. More generally, this study provides a wonderful example of how the emerging field of landscape genetics, which has primarily been applied to questions in conservation and ecology, now plays an essential role in evolutionary research.
Figure 1 Open in figure viewer PowerPoint Divergent colour morphs observed among populations of the strawberry poison frog, Dendrobates pumilio. Frogs are from San Cristobal (upper left), Cerro Brujo (upper right), Bastimentos (lower right), and Agua (lower left).  相似文献   

11.

Key message

We developed a universally applicable planning tool for optimizing the allocation of resources for one cycle of genomic selection in a biparental population. The framework combines selection theory with constraint numerical optimization and considers genotype×? environment interactions.

Abstract

Genomic selection (GS) is increasingly implemented in plant breeding programs to increase selection gain but little is known how to optimally allocate the resources under a given budget. We investigated this problem with model calculations by combining quantitative genetic selection theory with constraint numerical optimization. We assumed one selection cycle where both the training and prediction sets comprised double haploid (DH) lines from the same biparental population. Grain yield for testcrosses of maize DH lines was used as a model trait but all parameters can be adjusted in a freely available software implementation. An extension of the expected selection accuracy given by Daetwyler et al. (2008) was developed to correctly balance between the number of environments for phenotyping the training set and its population size in the presence of genotype?×?environment interactions. Under small budget, genotyping costs mainly determine whether GS is superior over phenotypic selection. With increasing budget, flexibility in resource allocation increases greatly but selection gain leveled off quickly requiring balancing the number of populations with the budget spent for each population. The use of an index combining phenotypic and GS predicted values in the training set was especially beneficial under limited resources and large genotype × environment interactions. Once a sufficiently high selection accuracy is achieved in the prediction set, further selection gain can be achieved most efficiently by massively expanding its size. Thus, with increasing budget, reducing the costs for producing a DH line becomes increasingly crucial for successfully exploiting the benefits of GS.  相似文献   

12.

Key message

This report describes an integrative analysis of seed-oil-content quantitative trait loci (QTL) in Brassica napus , using a high-density genetic map to align QTL among different populations.

Abstract

Rapeseed (Brassica napus) is an important source of edible oil and sustainable energy. Given the challenge involved in using only a few genes to substantially increase the oil content of rapeseed without affecting the fatty acid composition, exploitation of a greater number of genetic loci that regulate the oil content variation among rapeseed germplasm is of fundamental importance. In this study, we investigated variation in the seed-oil content among two related genetic populations of Brassica napus, the TN double-haploid population and its derivative reconstructed-F2 population. Each population was grown in multiple experiments under different environmental conditions. Mapping of quantitative trait loci (QTL) identified 41 QTL in the TN populations. Furthermore, of the 20 pairs of epistatic interaction loci detected, approximately one-third were located within the QTL intervals. The use of common markers on different genetic maps and the TN genetic map as a reference enabled us to project QTL from an additional three genetic populations onto the TN genetic map. In summary, we used the TN genetic map of the B. napus genome to identify 46 distinct QTL regions that control seed-oil content on 16 of the 19 linkage groups of B. napus. Of these, 18 were each detected in multiple populations. The present results are of value for ongoing efforts to breed rapeseed with high oil content, and alignment of the QTL makes an important contribution to the development of an integrative system for genetic studies of rapeseed.  相似文献   

13.
Limnanthes floccosa Howell is a variable autogamous species of recent origin. The phenetic relationships of a large number of populations ofL. floccosa were studied using taximetric techniques. Five subspecies are recognized inL. floccosa on the basis of the taximetric results.Limnanthes floccosa ssp.californica andL. floccosa ssp.grandiflora are described as new, andL. floccosa ssp.pumila andL. floccosa ssp.bellingeriana are proposed as new combinations. Aspects of autogamy responsible for the highly discrete pattern of variation inL. floccosa are discussed.  相似文献   

14.
15.

Key message

The former Coffea subgenus is a species complex showing qualitative gene flow and reproductive barriers between species. Such qualitative gene flow allowed its evolution over time, particularly during the successive forest expansion-regression cycles in relation with glaciation periods.

Abstract

The present paper reviews the main botanical, geographical and genetic characteristics of the Coffea genus and then focuses on the former Coffea subgenus. Its broad distribution in Africa, Madagascar and Mascarene Islands is related to the high diversity of ecological situations. The importance of sympatry and parapatry cases and their role on gene flow possibilities between species is then underlined in the paper. Such gene flow is nevertheless partially limited by reproductive barriers: flowering date, frequency of hybrid F1 emergence, as well as the vigor and fertility of such hybrids. When hybridization occurs, distortion of segregation and disruptive selection would allow qualitative flow of non-adaptative genes, thus limiting the effect of genetic drift in small populations. The last part of the paper defines the notion of metaspecies in the case of the former Coffea by extension of the concept of metapopulation to species. The evolution over time of a metaspecies is finally discussed in relation with sympatry situations, gene flow possibilities and forest fragmentation.
  相似文献   

16.

Background

Elodea canadensis, Egeria densa and Lagarosiphon major are dioecious clonal species which are invasive in New Zealand and other regions. Unlike many other invasive species, the genetic variation in New Zealand is very limited. Clonal reproduction is often considered an evolutionary dead end, even though a certain amount of genetic divergence may arise due to somatic mutations. The successful growth and establishment of invasive clonal species may be explained not by adaptability but by pre-existing ecological traits that prove advantageous in the new environment. We studied the genetic diversity and population structure in the North Island of New Zealand using AFLPs and related the findings to the number of introductions and the evolution that has occurred in the introduced area.

Results

Low levels of genetic diversity were found in all three species and appeared to be due to highly homogeneous founding gene pools. Elodea canadensis was introduced in 1868, and its populations showed more genetic structure than those of the more recently introduced of E. densa (1946) and L. major (1950). Elodea canadensis and L. major, however, had similar phylogeographic patterns, in spite of the difference in time since introduction.

Conclusions

The presence of a certain level of geographically correlated genetic structure in the absence of sexual reproduction, and in spite of random human dispersal of vegetative propagules, can be reasonably attributed to post-dispersal somatic mutations. Direct evidence of such evolutionary events is, however, still insufficient.  相似文献   

17.
The geometric and electronic structures, absorption spectra, transporting properties, chemical reactivity indices and electrostatic potentials of the planar three-coordinate organoboron compounds 1-2 and twisted reference compound Mes 3 B, have been investigated by employing density functional theory (DFT) and conceptual DFT methods to shed light on the planarity effects on the photophysical properties and the chemical reactivity. The results show that the planar compounds 1-2 exhibit significantly lower HOMO level than Mes 3 B, owing to the stronger electronic induction effect of boron centers. This feature conspicuously induces a blue shifted absorption for 1, although 1 seemingly possesses more extended conjugation framework than Mes 3 B. Importantly, the reactivity strength of the boron atoms in 1-2 is much lower than that in Mes 3 B, despite the fact that the tri-coordinate boron centers of 1-2 are completely naked. The interesting and abnormal phenomenon is caused by the strong p-π electronic interactions, that is, the empty p-orbital of boron center is partly filled by π-electron of the neighbor carbon atoms in 1-2, which are confirmed by the analysis of Laplacian of the electron density and natural bond orbitals. Furthermore, the negative electrostatic potentials of the boron centers in 1-2 also interpret that they are not the most preferred sites for incoming nucleophiles. Moreover, it is also found that the planar compounds 1-2 can act as promising electron transporting materials since the internal reorganization energies for electron are really small.
Figure
The planar effects significantly affect the frontier molecular orbital levels, absorption wavelengths, transporting properties, and chemical reactivities of compounds 1-2. The underlying origin has been revealed by density functional theory and conceptual density functional theory calculations  相似文献   

18.
Pfrender ME 《Molecular ecology》2012,21(9):2051-2053
Understanding how natural populations adapt to their local environments is a major research theme for ecological genomics. This endeavour begins by sleuthing for shared genetic similarities among unrelated natural populations sharing adaptive traits to documented selective pressures. When the selective pressures have low dimensionality, and the genetic response is localized to a few genes of major effect, this detective work is relatively straightforward. However, in the real world, populations face a complex mixture of selective pressures and many adaptive responses are the result of changes in quantitative traits that have a polygenic genetic basis. This complex relationship between environment and adaptation presents a significant challenge. How can we begin to identify drivers of adaptation in natural settings? In this issue of Molecular Ecology, Orsini et al. (2012) take advantage of the biological attributes of the freshwater microcrustacean Daphnia ( Fig. 1 ) to disentangle multidimensional selection’s signature on the genome of populations that have repeatedly evolved adaptive responses to isolated selective pressures including predation, parasitism and anthropogenic changes in land use. Orsini et al. (2012) leverage a powerful combination of spatially structured populations in a geographic mosaic of environmental stressors, the historical archive of past genotypes preserved in lake‐bottom sediments and selection experiments to identify sets of candidate genomic regions associated with adaptation in response to these three environmental stressors. This study provides a template for future investigation in ecological genomics, combining multiple experimental approaches with the genomic investigation of a well‐studied ecological model species.
Figure 1 Open in figure viewer PowerPoint Adult Daphnia magna carrying a resting egg in the brood pouch. The water flea Daphnia is a renowned ecological model system and rapidly developing as an ecological and environmental genomics model species. Photo credit Joachim Mergeay.  相似文献   

19.

Background

Disruptive selection has been documented in a growing number of natural populations. Yet, its prevalence within individual systems remains unclear. Furthermore, few studies have sought to identify the ecological factors that promote disruptive selection in the wild. To address these issues, we surveyed 15 populations of Mexican spadefoot toad tadpoles, Spea multiplicata, and measured the prevalence of disruptive selection acting on resource-use phenotypes. We also evaluated the relationship between the strength of disruptive selection and the intensity of intraspecific competition??an ecological agent hypothesized to be an important driver of disruptive selection.

Results

Disruptive selection was the predominant mode of quadratic selection across all populations. However, a directional component of selection favoring an extreme ecomorph??a distinctive carnivore morph??was also common. Disruptive selection was strongest in populations experiencing the most intense intraspecific competition, whereas stabilizing selection was only found in populations experiencing relatively weak intraspecific competition.

Conclusions

Disruptive selection can be common in natural populations. Intraspecific competition for resources may be a key driver of such selection.  相似文献   

20.

Key message

This study demonstrates for the first time that resistance to different root lesion nematodes ( P. neglectus and P. penetrans ) is controlled by a common QTL. A major resistance QTL ( Rlnnp6H ) has been mapped to chromosome 6H using two independent barley populations.

Abstract

Root lesion nematodes (Pratylenchus spp.) are important pests in cereal production worldwide. We selected two doubled haploid populations of barley (Igri × Franka and Uschi × HHOR 3073) and infected them with Pratylenchus penetrans and Pratylenchus neglectus. Nematode multiplication rates were measured 7 or 10 weeks after infection. In both populations, continuous phenotypic variations for nematode multiplication rates were detected indicating a quantitative inheritance of resistance. In the Igri × Franka population, four P. penetrans resistance QTLs were mapped with 857 molecular markers on four linkage groups (2H, 5H, 6H and 7H). In the Uschi × HHOR 3073 population, eleven resistance QTLs (P. penetrans and P. neglectus) were mapped with 646 molecular markers on linkage groups 1H, 3H, 4H, 5H, 6H and 7H. A major resistance QTL named Rlnnp6H (LOD score 6.42–11.19) with a large phenotypic effect (27.5–36.6 %) for both pests was mapped in both populations to chromosome 6H. Another resistance QTL for both pests was mapped on linkage group 5H (Igri × Franka population). These data provide first evidence for common resistance mechanisms against different root lesion nematode species. The molecular markers are a powerful tool for the selection of resistant barley lines among segregating populations because resistance tests are time consuming and laborious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号