首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An infrared (ir) method to determine the secondary structure of proteins in solution using the amide I region of the spectrum has been devised. The method is based on the circular dichroism (CD) matrix method for secondary structure analysis given by Compton and Johnson (L. A. Compton and W. C. Johnson, 1986, Anal. Biochem. 155, 155-167). The infrared data matrix was constructed from the normalized Fourier transform infrared spectra from 1700 to 1600 cm-1 of 17 commercially available proteins. The secondary structure matrix was constructed from the X-ray data of the seventeen proteins with secondary structure elements of helix, beta-sheet, beta-turn, and other (random). The CD and ir methods were compared by analyzing the proteins of the CD and ir databases as unknowns. Both methods produce similar results compared to structures obtained by X-ray crystallographic means with the CD slightly better for helix conformation, and the ir slightly better for beta-sheet. The relatively good ir analysis for concanavalin A and alpha-chymotrypsin indicate that the ir method is less affected by the presence of aromatic groups. The concentration of the protein and the cell path length need not be known for the ir analysis since the spectra can be normalized to the total ir intensity in the amide I region. The ir spectra for helix, beta-sheet, beta-turn, and other, as extracted from the data-base, agree with the literature band assignments. The ir data matrix and the inverse matrix necessary to analyze unknown proteins are presented.  相似文献   

2.
J Cladera  M Sabés  E Padrós 《Biochemistry》1992,31(49):12363-12368
Fourier transform infrared spectroscopy at a resolution of 1 cm-1 has been used to study the conformation of dark-adapted bacteriorhodopsin in the native purple membrane, in H2O and D2O suspensions. A detailed analysis of the amide I bands was made using derivative and deconvolution techniques. Curve-fitting results of four independent experiments indicate, after estimation of the methodological errors, that native bacteriorhodopsin contains 52-73% alpha-helices, 13-19% reverse turns, 11-16% beta-sheets, and 3-7% unordered segments. Our analysis has enabled the identification of several components corresponding to alpha-helices, beta-sheets, and reverse turns. Besides the alpha I- and alpha II-helices (peaking at 1658 and 1665 cm-1), we propose that two more infrared bands arise from alpha-helical structures: one at 1650 cm-1 from alpha I and another one at 1642 cm-1 in H2O suspension, which could originate from type III beta-turns (i.e., one turn of 3(10)-helix). The relatively high content of reverse turns suggests the presence of one reverse turn per loop, plus another one in the C-terminal segment. On the other hand, several reasons argue that the calculated mean beta-sheet content of around 14% should be decreased somewhat. These beta-sheets could be located in the noncytoplasmatic links of the bacteriorhodopsin molecule.  相似文献   

3.
Fourier transform infrared (FTIR) difference spectra are presented for bacteriorhodopsin (BR) at low temperature. Previous FTIR measurements have identified several tyrosine residues that change their absorption characteristics between light-adapted BR and dark-adapted BR, or between intermediates K and M [Dollinger, G., Eisenstein, L., Lin, S.-L., Nakanishi, K., Odashima, K., & Termini, J. (1986) Methods Enzymol. 127, 649-662]. These changes were explained by protonation/deprotonation of tyrosine moieties and perturbation of the protein environment surrounding tyrosines. A tyrosine deprotonation was observed to occur between intermediates K and M. The present studies confine the deprotonation to being between intermediates L and M and show that no tyrosines undergo changes between the K and the L states. Evidence is presented that none of the tyrosines undergoing changes at low temperature can be assigned to tyrosine-64. The environmental changes of these tyrosines are discussed in relation to the proton pumping mechanism. Their spatial relation to the chromophore is also discussed. At least two tyrosines are suggested to reside close to the retinal binding site. The reactive groups of the nitrated tyrosine-64 are speculated to be remote from the Schiff base and the active tyrosines but can possibly interact sterically with the ionone ring of the retinal.  相似文献   

4.
The secondary structure of a recombinant Bacillus licheniformis endo-beta-1,3-1,4-D-glucanase (EC.3.2.1.73) has been estimated by Fourier Transform Infrared Spectroscopy and also predicted by the algorithm of Chou and Fasman. From the curve fitting of the deconvolved IR spectrum, the most probable distribution of the secondary structural classes appears to be about 40% beta-sheet, 25% reverse turn, 24% non-ordered and 11% alpha-helix. From theoretical prediction of secondary structure the protein would present 37% beta-sheet, 31% reverse turn, 22% non-ordered and 10% alpha-helix.  相似文献   

5.
Murayama K  Tomida M 《Biochemistry》2004,43(36):11526-11532
Fourier transform infrared (FT-IR) spectra were measured for an aqueous solution (pD = 5.40) of defatted monomer bovine serum albumin (BSA) over a temperature range of 25-90 degrees C to investigate temperature-induced secondary structure and conformation changes. The curve fitting method combined with the Fourier self-deconvolution technique allowed us to explore details of the secondary structure and conformation changes in defatted BSA. Particularly striking in the FT-IR spectra was an observation of the formation of an irreversible intermolecular beta-sheet of BSA on heating above 70 degrees C. A band at 1630 cm(-1) in the spectra was assigned to short-segment chains connecting alpha-helical segments. The transition temperature for the short-segment chains connecting alpha-helical segments is lower by 17-18 degrees C, when compared to those of the alpha-helix, turn, and intermolecular beta-sheet structures of BSA, suggesting that the alpha-helix and turn structures of BSA are cooperatively denatured on heating. Moreover, the results give an important feature in heat-induced denaturation of BSA that the conformation changes occur twice around both 57 and 75 degrees C. The appearance of two peaks is interpreted by the collapse of the N-terminal BSA domain due to the crevice in the vicinity between domains I and II at low-temperature transition and by the change in cooperative unit composed of the other two BSA domains at high-temperature transition.  相似文献   

6.
7.
W Z He  W R Newell  P I Haris  D Chapman  J Barber 《Biochemistry》1991,30(18):4552-4559
The secondary structure of the photosystem II (PSII) reaction center isolated from pea chloroplasts has been characterized by Fourier transform infrared (FTIR) spectroscopy. Spectra were recorded in aqueous buffers containing H2O or D2O; the detergent present for most measurements was dodecyl maltoside. The broad amide I and amide II bands were analyzed by using second-derivative and deconvolution procedures. Absorption bands were assigned to the presence of alpha-helices, beta-sheets, turns, or random structure. Quantitative analysis revealed that this complex contained a high proportion of alpha-helices (67%) and some antiparallel beta-sheets (9%) and turns (11%). An irreversible decrease in the intensity of the band associated with the alpha-helices occurs upon exposure of the isolated PSII reaction center to bright illumination. This loss of alpha-helical content gave rise to an increase in other secondary structures, particularly beta-sheets. After similar pretreatment with light, sodium dodecyl sulfate polyacrylamide gel electrophoresis reveals lower mobility and solubility of constituent D1 and D2 polypeptides of the PSII reaction center. Some degradation of these polypeptides also occurs. In contrast, there is no change in the mobility of the two subunits of cytochrome b559. In the absence of illumination, the PSII reaction center exchanged into dodecyl maltoside shows good thermal stability as compared with samples in Triton X-100. Only at a temperature of about 60 degrees C do spectral changes take place that are indicative of denaturation.  相似文献   

8.
Sivakumar V  Wang R  Hastings G 《Biochemistry》2005,44(6):1880-1893
Time-resolved step-scan Fourier transform infrared (FTIR) difference spectroscopy, with 5 mus time resolution, has been used to produce P700(+)A(1)(-)/P700A(1) FTIR difference spectra in intact photosystem I particles from Synechococcus sp. 7002 and Synechocystis sp. 6803 at 77 K. Corresponding spectra were also obtained for fully deuterated photosystem I particles from Synechococcus sp. 7002 as well as fully (15)N- and (13)C-labeled photosystem I particles from Synechocystis sp. 6803. Static P700(+)/P700 FTIR difference spectra at 77 K were also obtained for all of the unlabeled and labeled photosystem I particles. From the time-resolved and static FTIR difference spectra, A(1)(-)/A(1) FTIR difference spectra were constructed. The A(1)(-)/A(1) FTIR difference spectra obtained for unlabeled trimeric photosystem I particles from both cyanobacterial strains are very similar. There are some mode frequency differences in spectra obtained for monomeric and trimeric PS I particles. However, the spectra can be interpreted in an identical manner, with the proposed band assignments being compatible with all of the data obtained for labeled and unlabeled photosystem I particles. In A(1)(-)/A(1) FTIR difference spectra obtained for unlabeled photosystem I particles, negative bands are observed at 1559 and 1549-1546 cm(-)(1). These bands are assigned to amide II protein vibrations, as they downshift approximately 86 cm(-)(1) upon deuteration and approximately 13 cm(-)(1) upon (15)N labeling. Difference band features at 1674-1677(+) and 1666(-) cm(-)(1) display isotope-induced shifts that are consistent with these bands being due to amide I protein vibrations. The observed amide modes suggest alteration of the protein backbone (possibly in the vicinity of A(1)) upon A(1) reduction. A difference band at 1754(+)/1748(-) cm(-)(1) is observed in unlabeled spectra from both strains. The frequency of this difference band, as well as the observed isotope-induced shifts, indicate that this difference band is due to a 13(3) ester carbonyl group of chlorophyll a species, most likely the A(0) chlorophyll a molecule that is in close proximity to A(1). Thus A(1) reduction perturbs A(0), probably via a long-range electrostatic interaction. A negative band is observed at 1693 cm(-)(1). The isotope shifts associated with this band are consistent with this band being due to the 13(1) keto carbonyl group of chlorophyll a, again, most likely the 13(1) keto carbonyl group of the A(0) chlorophyll a that is close to A(1). Semiquinone anion bands are resolved at approximately 1495(+) and approximately 1414(+) cm(-)(1) in the A(1)(-)/A(1) FTIR difference spectra for photosystem I particles from both cyanobacterial strains. The isotope-induced shifts of these bands could suggest that the 1495(+) and 1414(+) cm(-)(1) bands are due to C-O and C-C modes of A(1)(-), respectively.  相似文献   

9.
Fourier transform infrared (FT-IR) spectroscopy is a convenient physico-chemical technique to investigate various cell materials. Bacteria of class Mollicutes, identified by conventional methods, as Mycoplasma, Acholeplasma and Ureaplasma genera were characterized using this method. A data set of 74 independent experiments corresponding to fourteen reference strains of Mollicutes was examined by FT-IR spectroscopy to attempt a spectral characterization based on the biomolecular structures. In addition to the separation of Mollicutes within the lipidic region into five main clusters corresponding to the three phylogenetic groups tested, FT-IR spectroscopy allowed a fine discrimination between strains belonging to the same species by using selective spectral windows, particularly in the 1200-900 cm(-1) saccharide range. The results obtained by FT-IR were in good agreement with both taxonomic and phylogenetic classifications of tested strains. Thus, this technique appears to be a useful tool and an accurate mean for a rapid characterization of Mollicutes observed in humans.  相似文献   

10.
Secondary structure contents of tetanus neurotoxin have been estimated at neutral and acidic pH using circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy. An analysis of the far-ultraviolet CD spectra of the neurotoxin dissolved in 50 mM citrate-phosphate buffer (pH 7.0) revealed 20.0 +/- 2.1% alpha-helix, 50.5 +/- 2.1% beta-pleated sheets, no beta-turns, and 29.5% random coils, which is at considerable variance with results from an earlier detailed study of tetanus neurotoxin's secondary structures (J.P. Robinson, L.A. Holladay, J.H. Hash and D. Puett, J. Biol. Chem. 257 (1982) 407). However, the alpha-helix content estimated in this study is consistent with the earlier studies of Robinson et al. (J.P. Robinson, L.A. Holladay, J.B. Picklesimer and D. Puett, Mol. Cell. Biochem. 5 (1974) 147; J.P. Robinson, J.B. Picklesimer and D. Puett, J. Biol. Chem. 250 (1975) 7435) and with the study by Lazarovici et al. (P. Lazarovici, P. Yanai and E. Yavin, J. Biol. Chem. 262 (1986) 2645), although other secondary structural features do not agree with those of the previous studies. Secondary structure estimation from Fourier transform infrared spectra in both amide I and amide III frequency regions revealed 22-23% alpha-helix, 49-51% beta-pleated sheets and 27-28% random coils, indicating a good correlation with the secondary structure content estimated from CD analysis. Lowering of the pH of the neurotoxin to 5.5 or 4.0 did not result in any noticeable change in the overall secondary structures. However, there were significant pH-induced variations observed in the individual curve-fitted FT-IR bands in the amide III frequency region. For example, the 1302 cm-1 band (relative area, 4.2%) observed at pH 7.0 was shifted to 1297 cm-1 (relative area, 2.2%) at pH 5.5, and the relative area of the band at 1316-1317 cm-1 (alpha-helix) increased by approx. 40%. This study suggests that contrary to earlier reports, tetanus neurotoxin is a beta-pleated sheet dominated structure, and although lower pH does not change the overall contents of the secondary structures, significant conformational alterations are observed.  相似文献   

11.
There may be several advantages associated with an antisense oligonucleotide that induces a bulged structure into its RNA target molecule. Many structures of RNA bulges are elucidated from single-stranded RNA models. However, a two-component system is the minimum requirement for a realistic antisense model. We have used Fourier transform infrared spectroscopy to investigate a single-stranded RNA oligonucleotide with known NMR solution structure, constructed to model a five nucleotide bulge, and its two-component oligonucleotide counterpart. The infrared spectra show A-helical base-paired stems and non-base-paired loops in both systems. The nucleosides are mainly in an anti-conformation. Both N-type and S-type of sugar puckers can be inferred from the infrared region sensitive to sugar conformations. The S-type of sugar pucker is likely to be associated with the nucleotides in the bulge. The FTIR results display an overall structural similarity between the two model systems.  相似文献   

12.
Rigler P  Ulrich WP  Hovius R  Ilegems E  Pick H  Vogel H 《Biochemistry》2003,42(47):14017-14022
High signal-to-noise Fourier transform infrared (FTIR) spectra of the 5-hydroxytryptamine (serotonin) receptor (5-HT(3)R) and the nicotinic acetylcholine receptor (nAChR) were obtained by microscope FTIR spectroscopy using micrometer-sized, fully hydrated protein films. Because this novel procedure requires only nanogram quantities of membrane proteins, which is 4-5 orders of magnitude less than the amount of protein typically used for conventional FTIR spectroscopy, it opens the possibility to access the structure and dynamics of many important mammalian receptor proteins. The secondary structure of detergent-solubilized 5-HT(3)R determined by curve fitting of the amide I band yielded 36% alpha-helix, 33% beta-strand, 15% beta-turn, and 16% nonregular structures, which remained unchanged upon reconstitution in lipid membranes. From hydrogen-deuterium exchange, the secondary structure of the water-accessible part of 5-HT(3)R was determined as 14% alpha-helix, 16% beta-strand, 26% beta-turn, and 14% nonregular structures. Interestingly, we found that both the overall and the water-accessible nAChR secondary structures were nearly identical to those of 5-HT(3)R, in agreement with predicted structures of this class of receptors. This is the first time that structural investigations were obtained for two closely related ligand-gated ion channels under strictly identical experimental conditions.  相似文献   

13.
S J Perkins  P I Haris  R B Sim  D Chapman 《Biochemistry》1988,27(11):4004-4012
Fourier transform infrared spectroscopy was used to investigate the secondary structure of human complement component factor H in H2O and 2H2O buffers. The spectra show a broad amide I band which after second-derivative calculations is shown to be composed of three components at 1645, 1663, and 1685 cm-1 in H2O and at 1638, 1661, and 1680 cm-1 in 2H2O. The frequencies of these components are consistent with the existence of an extensive antiparallel beta-strand secondary structure. The exchange properties of the amide protons of factor H as measured in 2H2O buffers are rapid and lead to an estimate of NH proton nonexchange that is comparable with those for small globular proteins. Human factor H is constructed from a linear sequence of 20 short consensus repeats with a mean of 61 residues in each one. To investigate the secondary structure further, secondary structure predictions were carried out on the basis of an alignment scheme for 101 sequences for these repeats as found in human factor H and 12 other proteins. These predictions were averaged in order to improve the reliability of the calculations. Both the Robson and the Chou-Fasman methods indicate significant beta-structural contents. Residues 21-51 in the 61-residue repeat show a clear prediction of four strands of beta-structure and four beta-turns. A structural model based on antiparallel beta-strands in the secondary structure is proposed and discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In this work, the interactions between the main catecholamines-epinephrine and norepinephrine-and fibrinogen were investigated by NMR and Fourier transform infrared spectroscopies. The two hormones were found to interact with fibrinogen and to affect the protein secondary structure to a different extent. In particular, the protein selectively binds epinephrine at both the basal and stress concentrations, while it shows a weak nonspecific interaction with norepinephrine. The interaction with the stress level of epinephrine leads to drastic protein conformational changes, whereas norepinephrine does not affect fibrinogen secondary structure, even at stress concentration.  相似文献   

15.
An overview of the application of Fourier transform infrared spectroscopy for the analysis of the structure of proteins and protein-ligand recognition is given. The principle of the technique and of the spectra analysis is demonstrated. Spectral signal assignments to vibrational modes of the peptide chromophore, amino acid side chains, cofactors and metal ligands are summarized. Several examples for protein-ligand recognition are discussed. A particular focus is heme proteins and, as an example, studies of cytochrome P450 are reviewed. Fourier transform infrared spectroscopy in combination with the various techniques such as time-resolved and low-temperature methods, site-directed mutagenesis and isotope labeling is a helpful approach to studying protein-ligand recognition.  相似文献   

16.
The folding of membrane proteins was addressed using outer membrane protein porin from the soil bacterium Paracoccus denitrificans (P. den.). IR spectroscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis were used to probe the effect of mutagenesis on the thermal stability of the protein. Secondary structure analysis by amide I ir spectroscopy showed that the wild-type protein was predominantly composed of beta-sheet, which supports the x-ray crystal structure information (A. Hirsch, J. Breed, K. Saxena, O.-M. H. Richter, B. Ludwig, K. Diederichs, and W. Welte, FEBS Letters, 1997, Vol. 404, pp. 208-210). The mutants E81Q, W74C, and E81Q/D148N were shown to have similar secondary structure composition as the wild type. Wild-type protein and the mutants in detergent micelles underwent irreversible denaturation as a result of heating. Transition temperature calculated from the amide I analysis revealed that mutant porins were slightly less stable compared to the wild type. The protein in micelles showed complete monomerization of the trimer above 85 degrees C. In native-like conditions (provided by liposomes), no change was observed in the secondary structure of the protein until 95 degrees C. This is supported by SDS-PAGE as no change in quaternary structure was observed, proving that the proteins are structurally thermostable in liposomes as compared to micelles. Our studies demonstrated that porins resistant to detergents and proteases are highly thermostable as well.  相似文献   

17.
18.
To explore the spatial organization and functional dynamics of the citrate transport protein (CTP), a nitroxide scan was carried out along 22 consecutive residues within the fourth transmembrane domain (TMDIV). This domain has been implicated as being of unique importance to the CTP mechanism due to (i) the presence of two intramembranous positive charges that are essential for CTP function and (ii) the existence of a transmembrane aqueous surface within this domain which likely corresponds to a portion of the citrate translocation pathway. The sequence-specific variation in the mobilities of the introduced nitroxides and their accessibilities to molecular O(2) reveal an alpha-helical conformation along the sequence. The accessibilities to NiEDDA are out of phase with accessibilites to O(2), indicating that one face of the helix is solvated by the lipid bilayer while the other is solvated by an aqueous environment. A gradient of NiEDDA accessibility is observed along the helix surface facing the aqueous phase, and the EPR spectral line shapes at these sites indicate considerable motional restriction. In the context of the model where TMDIV lines the translocation pathway, these data suggest a barrier to passive diffusion through the pathway. This paper reports the first use of site-directed spin labeling to study mitochondrial transporter structure.  相似文献   

19.
Fourier transform infrared spectroscopy has become well known as a sensitive and informative tool for studying secondary structure in proteins. Present analysis of the conformation-sensitive amide I region in protein infrared spectra, when combined with band narrowing techniques, provides more information concerning protein secondary structure than can be meaningfully interpreted. This is due in part to limited models for secondary structure. Using the algorithm described in the previous paper of this series, we have generated a library of substructures for several trypsin-like serine proteases. This library was used as a basis for spectra-structure correlations with infrared spectra in the amide I' region, for five homologous proteins for which spectra were collected. Use of the substructure library has allowed correlations not previously possible with template-based methods of protein conformational analysis.  相似文献   

20.
In this study, we examine the interaction between two bacterial proteins, namely HPr and IIAmtl of the Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system, using FTIR spectroscopy. In an interaction involving a 1:1 molar ratio of these two proteins, when they are unlabeled, the overlap of absorbance of the amide I band arising from the peptide group vibrations of the two proteins is such that it is not possible to determine the contribution which each protein makes to the absorbance. Uniform 15N labeling has little effect on the frequency of the amide I band although there is a significant shift of the amide II band. However, we show that uniform (90%) 13C labeling produces a large shift of bands associated with the carbonyl moiety, especially the amide I band. This opens up windows in different regions of the infrared spectrum. Thus, when the same mixture of the two bacterial proteins is made where one of the proteins is uniformly 13C-labeled (in our case HPr), the amide I maxima of this protein shifts by approximately 45 cm-1 toward lower frequency and reveals the previously overlapped amide I band of the unlabeled IIAmtl. This application of 13C labeling shows the potential of studying protein-protein interactions using FTIR spectroscopy. With thoughtful selection of systems and labeling strategies, numerous studies with proteins should be possible. These could include, among others, enzyme-substrate and protein-ligand interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号