共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Delta-aminolevulinic acid dehydratase of Rhodopseudomonas spheroides 总被引:12,自引:0,他引:12
5.
6.
7.
8.
Extracts of Rhodopseudomonas spheroides contain two ferrochelatases: one is soluble and forms metalloporphyrins from deuteroporphyrin and haematoporphyrin; the other is particulate and forms metalloporphyrins from protoporphyrin, mesoporphyrin, deuteroporphyrin and haematoporphyrin. Neither enzyme incorporates Mg2+ into porphyrins or Fe2+ into porphyrin cytochrome c. By using the particulate enzyme, plots of 1/v versus 1/s when one substrate was varied and the other kept constant showed that neither substrate affected the Km of the other. The suggested sequential mechanism for the reaction is supported by derivative plots of slopes and intercepts. The Km for deuteroporphyrin was 21.3μm and that for Co2+ was 6.13μm. The enzyme incorporated Co2+, Fe2+, Zn2+, Ni2+ and Mn2+; Cd2+ was not incorporated and was an inhibitor, competitive with respect to Co2+, non-competitive with respect to deuteroporphyrin. The Ki for Cd2+ was 0.73μm. Ferrochelatase was inhibited by protohaem, non-competitively with respect to Co2+ or with respect to deuteroporphyrin. Inhibition by magnesium protoporphyrin was non-competitive with respect to deuteroporphyrin, uncompetitive with respect to Co2+. The inhibitory concentrations of the metalloporphyrins are lower than those required for the inhibition of δ-aminolaevulate synthetase by protohaem. Fe2+ is not incorporated aerobically into porphyrins unless an electron donor, succinate or NADH, is supplied; the low aerobic rate of metalloporphyrin synthesis obtained is insensitive to rotenone and antimycin. The rate of Fe3+ incorporation increases as anaerobic conditions are achieved. 相似文献
9.
10.
Bacteriophages of Rhodopseudomonas spheroides: Isolation and Characterization of a Rhodopseudomonas spheroides Bacteriophage 总被引:5,自引:2,他引:5 下载免费PDF全文
A DNA-containing bacteriophage, designated RS1, infecting Rhodopseudomonas spheroides 2.4.1, has been isolated from sewage. The buoyant density of RS1 in CsCl equilibrium centrifugation is 1.50 g/cm(3), and the buoyant density of RS1 DNA is 1.706. The phage possesses a polyhedral head, approximately 65 nm in diameter, and a tail 60 nm long. When grown on aerobic cells, RS1 has a latent period of 120 min and an average burst size of 20. When grown on anaerobic cells, RS1 has a latent period of 150 min, and a burst size similar to that observed during aerobic infection. The adsorption rate constant of RS1 to aerobic cells is 1.2 x 10(-9) ml/min, and 0.58 x 10(-9) ml/min to anaerobic cells. Adsorption of RS1 to R. spheroides requires the presence of divalent cations. 相似文献
11.
12.
13.
Extrachromosomal deoxyribonucleic acid in wild-type and photosynthetically incompetent strains of Rhodopseudomonas spheroides. 总被引:1,自引:6,他引:1 下载免费PDF全文
Three covalently closed circular species of extrachromosomal deoxyribonucleic acid have been identified by electron microscopic analysis in strains of Rhodopseudomonas spheroides. The weights of these plasmids, as determined from contour length, are about 75 X 10(6), 66 X 10(6), and 28 X 10(6) daltons for both aerobically grown and photosynthetically grown R. spheroides strain 2.4.1 (NRS) and for the photosynthetically incompetent strain V-2 (obtained by N-methyl-N-nitro-N'nitrosoguanidine mutagenesis) and 74 X 10(6), 66 X 10(6) and 34 X 10(6) daltons for a second photosynthetically incompetent strain, SLS I (obtained by incubating strain 2.4.1 [NRS] in medium containing sodium lauryl sulfate). Buoyant densities uere found to be 1.717 g/cm3 (58% guanine plus cytosine) for the plasmids of 66 X 10(6), 28 X 10(6), and 34 X 10(6) daltons in weight and 1.724 g/cm3 (65% guanine plus cytosine) for those weighing about 75 X 10(6) daltons. Possible functions of these plasmids are discussed. 相似文献
14.
15.
Isolation of a reaction center fraction from Rhodopseudomonas spheroides 总被引:12,自引:0,他引:12
16.
17.
Reaction center preparations of Rhodopseudomonas spheroides: energy transfer and structure 总被引:4,自引:0,他引:4
L Slooten 《Biochimica et biophysica acta》1972,256(2):452-466
18.
19.
20.