首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryptococcus neoformans exhibited diphasic growth when grown under limited aeration. First, it grew exponentially, but at OD 1, the concentration of dissolved oxygen in culture decreased to 1 mg l(-1) and a second phase of slow growth was started. This phase was characterized by a shift of budding from S to G(2), a sharp decrease in budding index and a sharp increase in the proportion of unbudded G(2) cells to 80%. Thus, a deficit in oxygen was demonstrated to delay the timing of budding, prolong the G(2) phase and cause accumulation of cells after DNA synthesis, but before commitment to budding.  相似文献   

2.
Flow cytometry provides a rapid, sensitive and accurate analytical means to monitor hybridoma cell cultures. The use of flow cytometry has enabled us to study the changes in DNA, RNA, protein, IgG, mitochondrial activity and cell size that take place during the growth cycle of batch culture. The temporal changes in the levels of these analytes and their heterogeneity have been related to the growth/death kinetics. The maximum proportion of S-cells was reached early in the growth phase while a population of low fluorescence cells with lower polidy than G1, dead cells and fragmented nuclei emerged during the death phase. Supplementation with amino acids during the exponential phase prolonged the growth cycle by enhancing cell proliferation. The fraction of S/G2 cells was much reduced by a reduction in serum concentration but was maintained during the prolonged non-proliferating "stationary" phase. The magnitude of Rhodamine 123 staining showed a consistent and general decrease during late exponential and decline phases. This trend was accompanied by an increase in the fraction of the Propidium Iodide-stained population which reflected the deteriorating metabolic and membrane integrity. Decrease in mean fluorescence intensity for DNA, RNA, protein and intracellular IgG was noted at the decline phase. Intracellular immunofluorescence was a more reliable indicator of antibody productivity than surface immunofluorescence.  相似文献   

3.
Abstract Polyhydroxyalkanoate (PHA) accumulation and the morphology of PHA inclusion bodies were examined in Bacillus megaterium , strain 11561. Our results show a pattern of PHA degradation and synthesis, and of inclusion body growth and proliferation not previously reported. Degradation of PHA in the lag phase was followed by synthesis of PHA at an accelerating rate during exponential growth. PHA accumulation reached a maximum rate at late exponential/early stationary phase and the rate declined to a lower steady state in the stationary phase. During exponential and early stationary phase growth, PHA had a faster doubling rate than that of total cell biomass (w/w). Results of the morphology studies suggest that PHA inclusion bodies proliferated by budding and reached maximum size by early stationary phase growth. This pattern was observed in minimal and in rich media.  相似文献   

4.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

5.
A fluorimetric assay has been used to determine the DNA content of amoebae of Dictyostelium discoideum during growth and development. Amoebae grown in axenic culture tended to be multinucleate and had a greater DNA content than amoebae grown with a bacterial substrate, which were mononucleate. During the first 10 h of development there was little change in the DNA content of amoebae grown with a bacterial substrate, but the average DNA content per cell in amoebae grown axenically decreased as the amoebae became virtually mononucleate. Amoebae at 10 h development that had been harvested during exponential axenic growth were divided into two populations by countercurrent distribution in a polymer two-phase system. DNA content indicated that one population was largely in the G2-phase of the cell cycle, whereas the other population was largely in the G1-phase. Similar results were obtained at 10 h development with amoebae harvested during the stationary phase of axenic growth, although these amoebae start development all in the G2-phase of the cell cycle. Spores had a low DNA content, indicating that they were in G1-phase. It is proposed that all amoebae in G2-phase after early development differentiate, after mitosis, into spores and that stalk cells are formed from amoebae that remain in G1-phase after 10 h development.  相似文献   

6.
Cell cycle progression of Cryptococcus neoformans was studied for cells grown exponentially at 15°, 24°, and 30°C. Except for speed, cell cycle progression was similar. In particular, budding occurred relatively soon after initiation of DNA synthesis at 15°, 24°, and 30°C. After growth temperature was shifted from 15° to 30°C, cells were transiently arrested before initiation of DNA synthesis. Thus, similar to Saccharomyces erevisiae, Start was the main susceptible cell cycle controlling point in C. neoformans. However, after spontaneous release from arrest as above, cells were further arrested in the unbudded state. Thus, the timing of budding was delayed just before the G2 phase, or even until after entering the G2 phase, but it was also transient, and 5h after the shift buds emerged relatively soon after initiation of DNA synthesis. Thus, C. neoformans cells can respond adaptively to mild stress by delaying budding. The existence of the second susceptible cell cycle control point, i.e., budding, appears to endow C. neoformans with a unique characteristic of stronger inhibition of multiplication than growth. A model of the C. neoformans cell cycle is also presented.  相似文献   

7.
Recombinant mammalian cultures for heterologous gene expression typically involve cells traversing the cell cycle. Studies were conducted to characterize rates of accumulation of intracellular foreign protein in single cells during the cell cycle of Chinese hamster ovary (CHO) cells transfected with an expression vector containing the gene for dihydrofolate reductase (dhfr) and the lacZ gene for bacterial beta-galactosidase (a nonsecreated protein). The lacZ gene was under the control of the constitutive cytomegalovirus promoter. These normally attachment-grown cells were adapted to suspension culture in 10(-7) M methotrexate, and a dual-laser flow cytometer was used to simultaneously determine the DNA and foreign protein (beta-galactosidase) content of single living cells. Expression of beta-galactosidase as a function of cell cycle phase was evaluated for cells in the exponential growth phase, early plateau phase, and inhibited traverse of the cell cycle during exponential growth. The results showed that the beta-galactosidase production rate is higher in the S phase than that in the G1 or G2/M phases. Also, when cell cycle progression was stopped at the S phase by addition of aphidicolin, beta-galactosidase content in single cells was higher than that in exponential phase or plateau phase cells and increased with increasing culture time. Although the cells did not continue to divide after aphidicolin addition, the production of beta-galactosidase per unit volume of culture was very similar to that in normal exponential growth. (c) 1993 John Wiley & Sons, Inc.  相似文献   

8.
Abstract Stationary-phase cells of Cryptococcus neoformans displayed two morphological characteristics: virtually all the cells were unbudded even in the early stationary phase and even when grown in rich media, and average cell size increased from that of exponential-phase cells. DNA contents for small and large stationary-phase cells were determined by quantitative fluorescence microscopy after DNA staining with propidium iodide or DAPI. Small cells contained G, DNA, whereas large unbudded cells had either a G2 or G1 DNA content, indicating that Cr. neoformans can enter into the stationary phase from either the G1 or G2 period.  相似文献   

9.
We have isolated a mutation in the budding yeastSaccharomyces cerevisisae CDC28 gene that allowscdc13 cells, carrying damaged DNA, to continue with the cell division cycle. Whilecdc13 mutant cells are arrested as largebudded cells at the nonpermissive temperature 37‡C, thecdc13 cdc28 double mutant culture showed cells with one or more buds, most of which showed apical growth. The additional buds emerged without the intervening steps of nuclear division and cell separation. We suggest that thecdc28 mutation abrogates a checkpoint function and allows cells with damaged or incompletely replicated DNA an entry to another round of cell cycle and bypasses the mitotic phase of the cell cycle.  相似文献   

10.
Six human colon carcinoma cell lines were induced to enter stationary phase of growth by nutrient deprivation and cell crowding. Growth kinetics parameters (cell number, flow cytometric analysis of DNA distribution, and labelling and mitotic indices) were measured sequentially for all lines during the various stages of in vitro growth. Our results demonstrated that a substantial fraction of cells (9-18%) were located in G2 phase when they changed from an exponential to a stationary mode of growth. Moreover, a large number of cells in stationary phase of growth had an S-phase DNA content, as determined by flow cytometry, but failed to incorporate radioactive DNA precursors (up to 15-fold difference). To substantiate these findings, cells in stationary phase of growth were induced to enter exponential growth by re-seeding in fresh medium at a lower density. Subsequently observed changes in DNA-compartment distribution, and in labelling and mitotic indices were those expected from cells that had been arrested at different stages of the cycle during their previous stationary phase. Thus, the non-proliferating quiescent state (Q), traditionally located 'somewhere' in G1 phase, appears to be composed also of cells that can be arrested at other stages of the cycle (Qs and QG2). Although the proportion of such cells is rather small, their contribution to the growth kinetics behaviour of human in vivo tumours will become apparent following 'recruiting' or 'synchronizing' clinical manoeuvres and will prevent the formation of a clear-cut wave of synchronized cells.  相似文献   

11.
The relative levels of ribosomes, ribosomal protein S1, and elongation factor G in the growth cycle of Escherichia coli were examined with two-dimensional polyacrylamide gel electrophoresis. Nonequilibrium pH gradient polyacrylamide gel electrophoresis was used in the first dimension, and polyacrylamide gradient-sodium dodecyl sulfate gel electrophoresis was used in the second dimension. The identities of protein spots containing S1 and elongation factor G were confirmed by radioiodination of the proteins and peptide mapping of the radiolabeled peptides. The levels of ribosomes and ribosomal protein S1 were coordinately reduced during transition from exponential phase to stationary phase. There was no accumulation of S1 in the stationary phase. In marked contrast, the level of elongation factor G showed no significant change from exponential phase to stationary phase. The relative level of elongation factor G compared with ribosomes or S1 increased by about 2.5-fold during transition from exponential phase to stationary phase. The results show that there are differences between the regulation of the levels of elongation factor G and of ribosomal proteins, including S1, apparent during the transition from exponential to stationary phase.  相似文献   

12.
R G Riley  B J Kolodziej 《Microbios》1976,16(65-66):219-226
Glucose when present as a sole organic carbon source in a mineral salts medium is dissimilated by Caulobacter crescentus ATCC 15252 (strain CB-2) by the Entner-Doudoroff pathway throughout the culture cycle (exponential, transition, and stationary phase). Most of the available glucose that is present at the onset of exponential growth is assimilated by the cells during the transition phase or the period associated with stalk cell development. Swarmer cell development is minimized during this phase. During this same period the pH drops from 6.1 to 4.9 as a result of an abundant excretion of acetic acid. Simultaneously, poly-beta-hydroxybutyrate accumulates within the cells at an accelerated rate. An NADP-dependent glyceraldehyde-3-phosphate dehydrogenase is also present throughout the culture cycle which subsumes the presence of the subsequent enzymes of the Embden-Meyerhof-Parnas pathway in pyruvate formation. An operative tricarboxylic acid cycle is associated with cells throughout the culture cycle.  相似文献   

13.
We studied the effect of murine epidermal growth factor on cell proliferation and DNA synthesis in macronuclei of ciliate Tetrahymena pyriformis G1. Mitogenic effect of epidermal growth factor on proliferation-induced tetrahymena cells has been revealed. This effect is due to the induced progression of cells at G1 and, consequently, their earlier entering DNA synthesis phase of the first cell cycle. Epidermal growth factor had no mitogenic effect on the resting cells from stationary culture (G0 phase) whose development is independent of the growth factors in the medium.  相似文献   

14.
The data obtained indicate that spontaneous mutations in Saccharomyces cerevisiae are formed during DNA replication. With no DNA replication in the lag-period, in the stationary growth phase, spontaneous mutations are not formed in cell culture during the G1 phase of cell cycle. Experimental data show the absence of primary spontaneously occurring DNA lesion accumulation in the cell G1 phase. Spontaneous mutations of yeasts are formed in the S phase of cell cycle, apparently as DNA replication errors. It is established that the frequency of spontaneous reversions of the leu2 gene in Saccharomyces cerevisiae strain NA3-24 increases when the cells are cultivated on the culture medium with different concentrations of leucine.  相似文献   

15.
The objective of this study is to investigate the activity of methylthioadenosine phosphorylase (MTA-Pase) in mammalian cells stimulated by serum to proliferate and during their cell cycle. A direct correlation between growth rate and MTA-Pase activity in chinese hamster ovary (CHO) cells was observed. High MTA-Pase activity was observed during the exponential growth phase followed by a low enzyme activity during plateau phase of growth. To understand whether the fluctuations in the enzyme activity was cell cycle dependent, initially the activity of MTA-Pase was studied in plateau phase (G0) CHO cells as they synchronously go into S phase upon plating in fresh medium. The MTA-Pase activity in G0 cells before initiation of growth was 10.3 n.mol/mg protein/30'. A peak activity of 16.0 n.mol/mg/30 min was found at 12 hr after stimulation of proliferation by serum. These results indicate a peak MTA-Pase activity between 10-12 hr after stimulation of proliferation coinciding with the initiation of DNA synthesis. The activity of the enzyme slowly decreased as the cells completed their DNA synthesis. To understand whether these fluctuations are cell cycle specific, HeLa cells were synchronized in different phases and MTA-Pase activity was studied. The specific activities of the enzyme were 2.76, 2.99, 3.97, 3.28 and 3.65 n.moles/mg/30 min. in mitosis, early G1, late G1, S and G2 phases of the cell cycle respectively. These results indicate that MTA-Pase activity peaks in late G1 phase before the initiation of DNA synthesis, similar to the polyamine biosynthetic enzymes and might play a role in the initiation of DNA synthesis by salvage of adenine into nucleotide pools.  相似文献   

16.
The cell-cycle duration and the growth fraction were estimated in the shoot meristem of Sinapis alba L. during the transition from the vegetative to the floral condition. Compared with the vegetative meristem, the cell-cycle length was reduced from 86 to 32 h and the growth fraction, i.e. the proportion of rapidly cycling cells, was increased from 30–40% to 50–60%. These changes were detectable as early as 30 h after the start of the single inductive long day. The faster cell cycle in the evoked meristem was achieved by a shortening of the G1 (pre-DNA synthesis), S (DNA synthesis) and G2 (post-DNA synthesis) phases of the cycle. In both vegetative and evoked meristems, both-the central and peripheral zones were mosaics of rapidly cycling and non-cycling cells, but the growth fraction was always higher in the peripheral zone.Abbreviations G1 pre-DNA synthesis phase - G2 post-DNA synthesis phase - GF growth fraction - M mitosis phase - PLM percentage-labelled-mitoses method - S DNA synthesis phase - TdR thymidine  相似文献   

17.
1. About 15% of nucleolar DNA (1.712 g/cm3) from Physarum polycephalum displaying maximum hybridization to ribosomal RNA, is composed of circular DNA of 3.9 +/- 0.2 mum contour length or multiples thereof. 2. A portion of these circular molecules (25%) contained linear DNA pieces longer than circumference length. In a small fraction of circular DNA linear pieces, shorter than the unit length, were observed. 3. Most nucleolar DNA, [3H]thymidine-labeled or hybridizable to ribosomal RNA was separable from chromosomal DNA during G2 phase, mitosis and S phase of the cell cycle. 4. Ribosomal DNA content was not amplified during the cell cycle, was unchanged during exponential or stationary growth phase and amounted to about 0.11 -- 0.21% of nuclear DNA in diploid and hexaploid strains of Physarum or 100--200 ribosomal genes per diploid genome.  相似文献   

18.
M.L. FERNANDEZ MURGA, A. PESCE DE RUIZ HOLGADO AND G.F. DE VALDEZ, 1995. The effect of temperature and growth phase on the autolysis of Lactobacillus acidophilus CRL 640 was studied. The maximal rate of autolytic activity ( ca 48% cell lysis) was found at 45°C. At this temperature, two peaks were detected: the first one at the early exponential phase of growth and the second lysis peak during the transition stage from the exponential to the stationary phase. The release of intracellular compounds absorbing at 260 and 280 nm was also detected at 45°C. The microscopic observations revealed morphological changes and the presence of ghost cells. At 37°C, the low autolytic activity obtained would be related to the normal cell cycle of growth.  相似文献   

19.
In Silene vulgaris (M.) G. cell culture three growth phases were distinguished, namely, a lag phase, an exponential phase and a stationary phase. Pectin termed silenan and an acidic arabinogalactan were isolated as cell wall polysaccharides of S. vulgaris callus at the different growth phases during culture. Production of silenan as the galacturonan (or rhamnogalacturonan) core was observed at the beginning of the exponential phase and at the stationary phase of the callus growth. Arabinogalactan, containing the galacturonic acid residues, is formed at the exponential phase followed by attachment to the core of silenan in the middle of the exponential phase. The arabinogalactan constituent of silenan appeared to be destroyed gradually at the stationary growth phase. The monosaccharide compositions of silenan and arabinogalactan were determined at various phases of the callus growth. Silenan was found to be formed in maximum amounts at the exponential phase of the cell growth. Insignificant alterations of the yields of acidic arabinogalactan were found during culture while total productivity per litre of medium and rate of production per day of arabinogalactan were found to be maximal at the exponential phase of growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号