首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.  相似文献   

2.
Cytoglobin (Cygb) was investigated for its capacity to function as a NO dioxygenase (NOD) in vitro and in hepatocytes. Ascorbate and cytochrome b5 were found to support a high NOD activity. Cygb-NOD activity shows respective Km values for ascorbate, cytochrome b5, NO, and O2 of 0.25 mm, 0.3 μm, 40 nm, and ∼20 μm and achieves a kcat of 0.5 s−1. Ascorbate and cytochrome b5 reduce the oxidized Cygb-NOD intermediate with apparent second order rate constants of 1000 m−1 s−1 and 3 × 106 m−1 s−1, respectively. In rat hepatocytes engineered to express human Cygb, Cygb-NOD activity shows a similar kcat of 1.2 s−1, a Km(NO) of 40 nm, and a kcat/Km(NO) (kNOD) value of 3 × 107 m−1 s−1, demonstrating the efficiency of catalysis. NO inhibits the activity at [NO]/[O2] ratios >1:500 and limits catalytic turnover. The activity is competitively inhibited by CO, is slowly inactivated by cyanide, and is distinct from the microsomal NOD activity. Cygb-NOD provides protection to the NO-sensitive aconitase. The results define the NOD function of Cygb and demonstrate roles for ascorbate and cytochrome b5 as reductants.  相似文献   

3.
Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the biosynthetic half-reaction of the proline cycle by reducing Δ1-pyrroline-5-carboxylate (P5C) to proline through the oxidation of NAD(P)H. Many cancers alter their proline metabolism by up-regulating the proline cycle and proline biosynthesis, and knockdowns of PYCR1 lead to decreased cell proliferation. Thus, evidence is growing for PYCR1 as a potential cancer therapy target. Inhibitors of cancer targets are useful as chemical probes for studying cancer mechanisms and starting compounds for drug discovery; however, there is a notable lack of validated inhibitors for PYCR1. To fill this gap, we performed a small-scale focused screen of proline analogs using X-ray crystallography. Five inhibitors of human PYCR1 were discovered: l-tetrahydro-2-furoic acid, cyclopentanecarboxylate, l-thiazolidine-4-carboxylate, l-thiazolidine-2-carboxylate, and N-formyl l-proline (NFLP). The most potent inhibitor was NFLP, which had a competitive (with P5C) inhibition constant of 100 μm. The structure of PYCR1 complexed with NFLP shows that inhibitor binding is accompanied by conformational changes in the active site, including the translation of an α-helix by 1 Å. These changes are unique to NFLP and enable additional hydrogen bonds with the enzyme. NFLP was also shown to phenocopy the PYCR1 knockdown in MCF10A H-RASV12 breast cancer cells by inhibiting de novo proline biosynthesis and impairing spheroidal growth. In summary, we generated the first validated chemical probe of PYCR1 and demonstrated proof-of-concept for screening proline analogs to discover inhibitors of the proline cycle.  相似文献   

4.
Enzymes in cancer: Asparaginase from chicken liver   总被引:2,自引:1,他引:1  
1. A procedure for partial purification of asparaginase from chicken liver is presented. 2. The bulk of the enzyme is located in the soluble fraction of chicken liver. 3. Molecular weights of chicken-liver asparaginase and of the guinea-pig serum enzyme, estimated by gel filtration, were 306000 and 210000 respectively. The Michaelis constants (Km) at 37° and pH8·5 were 6·0×10−5m and 7·2×10−5m respectively. 4. At 50° the chicken-liver enzyme was moderately stable, some activity being lost by aggregation; in dilute electrolyte solutions the activity rapidly diminished. 5. The anti-lymphoma effect of guinea-pig serum in mice carrying the 6C3HED tumour was confirmed. Chicken-liver asparaginase also showed an effect but in this case the enzyme preparation had to be administered repeatedly. 6. Guinea-pig serum asparaginase was stable for several days in mouse blood, after intraperitoneal injection, whereas chicken-liver asparaginase rapidly disappeared. 7. Aspartic acid β-hydrazide was shown to be a competitive inhibitor of chicken-liver asparaginase with Ki approx. 5·6×10−4m. In mice it produced an anti-lymphoma effect, as reported previously.  相似文献   

5.
1. Purified rabbit-muscle and -liver glucose phosphate isomerase, free of contaminating enzyme activities that could interfere with the assay procedures, were tested for inhibition by fructose, fructose 1-phosphate and fructose 1,6-diphosphate. 2. Fructose 1-phosphate and fructose 1,6-diphosphate are both competitive with fructose 6-phosphate in the enzymic reaction, the apparent Ki values being 1·37×10−3−1·67×10−3m for fructose 1-phosphate and 7·2×10−3−7·9×10−3m for fructose 1,6-diphosphate; fructose and inorganic phosphate were without effect. 3. The apparent Km values for both liver and muscle enzymes at pH7·4 and 30° were 1·11×10−4−1·29×10−4m for fructose 6-phosphate, determined under the conditions in this paper. 4. In the reverse reaction, fructose, fructose 1-phosphate and fructose 1,6-diphosphate did not significantly inhibit the conversion of glucose 6-phosphate into fructose 6-phosphate. 5. The apparent Km values for glucose 6-phosphate were in the range 5·6×10−4−8·5×10−4m. 6. The competitive inhibition of hepatic glucose phosphate isomerase by fructose 1-phosphate is discussed in relation to the mechanism of fructose-induced hypoglycaemia in hereditary fructose intolerance.  相似文献   

6.
Vessal M  Hassid WZ 《Plant physiology》1973,51(6):1055-1060
d-Glucosamine-6-P N-acetyltransferase (EC 2.3.1.4) from mung bean seeds (Phaseolus aureus) was purified 313-fold by protamine sulfate and isoelectric precipitation, ammonium sulfate and acetone fractionation, and CM Sephadex column chromatography. The partially purified enzyme was highly specific for d-glucosamine-6-P. Neither d-glucosamine nor d-galactosamine could replace this substrate. The partially purified enzyme preparation was inhibited up to 50% by 2 × 10−2m EDTA, indicating the requirement of a divalent cation. Among divalent metal ions tested, Mg2+ was required for maximum activity of the enzyme. Mn2+ and Zn2+ were inhibitory, while Co2+ had no effect on the enzyme activity. The pH optimum of the enzyme in sodium acetate and sodium citrate buffers was found to be 5.2. The effect of Mg2+ on the enzyme in sodium acetate and sodium citrate buffers was particularly noticeable in the range of optimum pH. Km values of 15.1 × 10−4m and 7.1 × 10−4m were obtained for d-glucosamine-6-P and acetyl CoA, respectively. The enzyme was completely inhibited by 1 × 10−4mp-hydroxymercuribenzoate, and this inhibition was partially reversed by l-cysteine; indicating the presence of sulfhydryl groups at or near the active site of the enzyme.  相似文献   

7.
1. The effects of a number of respiratory inhibiting agents on the cell division of fertilized eggs of Arbacia punctulata have been determined. For eggs initially exposed to the reagents at 30 minutes after fertilization at 20°C., the levels of oxygen consumption prevailing in the minimum concentrations of reagents which produced complete cleavage block were (as percentages of the control): In 0.4 per cent O2-99.6 per cent N2, 32; in 0.7 per cent O2-99.3 per cent CO, 32; in 1.6 x 10–4 M potassium cyanide, 34; in 1 x 10–3 M phenylurethane, 70; in 4 x 10–3 M 5-isoamyl-5-ethyl barbituric acid, 20; in 3 x 10–4 M iodoacetic acid, 53. 2. The carbon monoxide inhibition of oxygen consumption and cell division was reversed by light. The percentage inhibition of oxygen consumption by carbon monoxide in the dark is described by the usual mass action equation with K, the inhibition constant, equal to approximately 60, as compared to values of 5 to 10 for yeast and muscle. In 20 per cent O2-80 per cent CO in the dark there was a slight stimulation of oxygen consumption, averaging 20 per cent. 3. Spectroscopic examination of fertilized and unfertilized Arbacia eggs reduced by hydrosulfite revealed no cytochrome bands. The thickness and density of the egg suspension was such as to indicate that, if cytochrome is present at all, the amount in Arbacia eggs is extremely small as compared to that in other tissues having a comparable rate of oxygen consumption. 4. Three reagents poisoning copper catalyses, potassium dithio-oxalate (10–2 M), diphenylthiocarbazone (10–4 M), and isonitrosoacetophenone (2 x 10–3 M) produced no inhibition of division of fertilized Arbacia eggs. 5. These results indicate that the respiratory processes required to support division in the Arbacia egg may perhaps differ in certain essential steps from the principal respiratory processes in yeast and muscle.  相似文献   

8.
KIF3AB is an N-terminal processive kinesin-2 family member best known for its role in intraflagellar transport. There has been significant interest in KIF3AB in defining the key principles that underlie the processivity of KIF3AB in comparison with homodimeric processive kinesins. To define the ATPase mechanism and coordination of KIF3A and KIF3B stepping, a presteady-state kinetic analysis was pursued. For these studies, a truncated murine KIF3AB was generated. The results presented show that microtubule association was fast at 5.7 μm−1 s−1, followed by rate-limiting ADP release at 12.8 s−1. ATP binding at 7.5 μm−1 s−1 was followed by an ATP-promoted isomerization at 84 s−1 to form the intermediate poised for ATP hydrolysis, which then occurred at 33 s−1. ATP hydrolysis was required for dissociation of the microtubule·KIF3AB complex, which was observed at 22 s−1. The dissociation step showed an apparent affinity for ATP that was very weak (K½,ATP at 133 μm). Moreover, the linear fit of the initial ATP concentration dependence of the dissociation kinetics revealed an apparent second-order rate constant at 0.09 μm−1 s−1, which is inconsistent with fast ATP binding at 7.5 μm−1 s−1 and a Kd,ATP at 6.1 μm. These results suggest that ATP binding per se cannot account for the apparent weak K½,ATP at 133 μm. The steady-state ATPase Km,ATP, as well as the dissociation kinetics, reveal an unusual property of KIF3AB that is not yet well understood and also suggests that the mechanochemistry of KIF3AB is tuned somewhat differently from homodimeric processive kinesins.  相似文献   

9.
1. An improved method is given for preparation of pyruvate,phosphate dikinase from Bacteroides symbiosus. 2. The bacterial enzyme is stable, free from interfering enzyme activities, and does not require thiol compounds to maintain stability during storage or assay. 3. New direct assays of enzyme activity are based on acid evolution or consumption as measured at constant pH in a pH-stat. 4. The optimum rate of reaction in the direction of pyruvate formation occurs at about pH6.4; in the direction of phosphoenolpyruvate formation, it is at pH7.2–7.8. 5. Newly determined substrate Km values for the enzyme are: AMP, 3.5×10−6m; ATP, 1×10−4m; pyruvate, 8×10−5m; Pi, 6×10−4m. 6. K+ may substitute for NH4+ in activating the reaction catalysed by the B. symbiosus enzyme. 7. In the direction of pyruvate formation the bivalent metal ion requirement of the enzyme is fulfilled by salts of nickel, manganese, magnesium and cobalt. In the other direction only magnesium salts were effective. 8. The nucleotide specificity of the enzyme is strictly limited to the adenine nucleotides. CTP and ITP strongly inhibit the reaction in the direction of phosphoenolpyruvate formation.  相似文献   

10.
DNA polymerase ν (pol ν) is a low fidelity A-family polymerase with a putative role in interstrand cross-link repair and homologous recombination. We carried out pre-steady-state kinetic analysis to elucidate the kinetic mechanism of this enzyme. We found that the mechanism consists of seven steps, similar that of other A-family polymerases. pol ν binds to DNA with a Kd for DNA of 9.2 nm, with an off-rate constant of 0.013 s−1and an on-rate constant of 14 μm−1 s−1. dNTP binding is rapid with Kd values of 20 and 476 μm for the correct and incorrect dNTP, respectively. Pyrophosphorylation occurs with a Kd value for PPi of 3.7 mm and a maximal rate constant of 11 s−1. Pre-steady-state kinetics, examination of the elemental effect using dNTPαS, and pulse-chase experiments indicate that a rapid phosphodiester bond formation step is flanked by slow conformational changes for both correct and incorrect base pair formation. These experiments in combination with computer simulations indicate that the first conformational change occurs with rate constants of 75 and 20 s−1; rapid phosphodiester bond formation occurs with a Keq of 2.2 and 1.7, and the second conformational change occurs with rate constants of 2.1 and 0.5 s−1, for correct and incorrect base pair formation, respectively. The presence of a mispair does not induce the polymerase to adopt a low catalytic conformation. pol ν catalyzes both correct and mispair formation with high catalytic efficiency.  相似文献   

11.
The alternation of substrate specificity expands the application range of enzymes in industrial, medical, and pharmaceutical fields. l‐Glutamate oxidase (LGOX) from Streptomyces sp. X‐119‐6 catalyzes the oxidative deamination of l‐glutamate to produce 2‐ketoglutarate with ammonia and hydrogen peroxide. LGOX shows strict substrate specificity for l‐glutamate. Previous studies on LGOX revealed that Arg305 in its active site recognizes the side chain of l‐glutamate, and replacement of Arg305 by other amino acids drastically changes the substrate specificity of LGOX. Here we demonstrate that the R305E mutant variant of LGOX exhibits strict specificity for l‐arginine. The oxidative deamination activity of LGOX to l‐arginine is higher than that of l‐arginine oxidase form from Pseudomonas sp. TPU 7192. X‐ray crystal structure analysis revealed that the guanidino group of l‐arginine is recognized not only by Glu305 but also Asp433, Trp564, and Glu617, which interact with Arg305 in wild‐type LGOX. Multiple interactions by these residues provide strict specificity and high activity of LGOX R305E toward l‐arginine. LGOX R305E is a thermostable and pH stable enzyme. The amount of hydrogen peroxide, which is a byproduct of oxidative deamination of l‐arginine by LGOX R305E, is proportional to the concentration of l‐arginine in a range from 0 to 100 μM. The linear relationship is maintained around 1 μM of l‐arginine. Thus, LGOX R305E is suitable for the determination of l‐arginine.  相似文献   

12.
Human cystathionine β-synthase (CBS), a novel heme-containing pyridoxal 5′-phosphate enzyme, catalyzes the condensation of homocysteine and serine or cysteine to produce cystathionine and H2O or H2S, respectively. The presence of heme in CBS has limited spectrophotometric characterization of reaction intermediates by masking the absorption of the pyridoxal 5′-phosphate cofactor. In this study, we employed difference stopped-flow spectroscopy to characterize reaction intermediates formed under catalytic turnover conditions. The reactions of l-serine and l-cysteine with CBS resulted in the formation of a common aminoacrylate intermediate (kobs = 0.96 ± 0.02 and 0.38 ± 0.01 mm−1 s−1, respectively, at 24 °C) with concomitant loss of H2O and H2S and without detectable accumulation of the external aldimine or other intermediates. Homocysteine reacted with the aminoacrylate intermediate with kobs = 40.6 ± 3.8 s−1 and re-formed the internal aldimine. In the reverse direction, CBS reacted with cystathionine, forming the aminoacrylate intermediate with kobs = 0.38 ± 0.01 mm−1 s−1. This study provides the first insights into the pre-steady-state kinetic mechanism of human CBS and indicates that the reaction is likely to be limited by a conformational change leading to product release.  相似文献   

13.
The effect of temperature upon the bioelectric potential across the protoplasm of impaled Valonia cells is described. Over the ordinary tolerated range, the P.D. is lowest around 25°C., rising both toward 15° and 35°. The time curves are characteristic also. The magnitude of the temperature effect can be controlled by changing the KCl content of the sea water (normally 0.012 M): the magnitude is greatly reduced at 0.006 M KCl, enhanced at 0.024 M, and greatly exaggerated at 0.1 M KCl. Conversely, temperature controls the magnitude of the potassium effect, which is smallest at 25°, with a cusped time course. It is increased, with a smoothly rising course, at 15°, and considerably enhanced, with only a small cusp, at 35°. A temporary "alteration" of the protoplasmic surface by the potassium is suggested to account for the time courses. This alteration does not occur at 15°; the protoplasm recovers only slowly and incompletely at 25°, but rapidly at 35°, in such fashion as to make the P.D. more negative than at 15°. This would account for the temperature effects observed in ordinary sea water.  相似文献   

14.
myo-Inositol homeostasis in foetal rabbit lung   总被引:2,自引:2,他引:0  
In several species, lung maturation is accompanied by a decline in the phosphatidylinositol content of lung surfactant and a concomitant increase in its phosphatidylglycerol content. To examine the possibility that this developmental change is influenced by the availability of myo-inositol, potential sources of myo-inositol for the developing rabbit lung were investigated. On day 28 of gestation the myo-inositol content of foetal rabbit lung tissue (2.3±0.5μmol/g of tissue) was not significantly different from that of adult lung tissue but the activity of d-glucose 6-phosphate:1l-myo-inositol 1-phosphate cyclase (cyclase) in foetal lung tissue (81.0±9.0nmol·h−1·g of tissue−1) was higher than that found in adult lung tissue (23.2±1.0nmol·h−1·g of tissue−1). Day 28 foetal rabbit lung tissue was found also to take up myo-inositol by a specific, energy-dependent, Na+-requiring mechanism. Half-maximal uptake of myo-inositol by foetal rabbit lung slices was observed when the concentration of myo-inositol in the incubation medium was 85μm. When the myo-inositol concentration was 1mm (but not 100μm) the addition of glucose (5.5mm) stimulated myo-inositol uptake. myo-Inositol uptake was observed also in adult rabbit lung and was found to be sub-maximal at the concentration of myo-inositol found in adult rabbit serum. The concentration of myo-inositol in the serum of pregnant adult rabbits (47.5±5.5μm) was significantly lower than that of non-pregnant adult female rabbits (77.9±9.2μm). On day 28 of gestation the concentration of myo-inositol in foetal serum (175.1±12.0μm) was much less than on day 25, but more than that found on day 30. A transient post-partum increase in the concentration of myo-inositol in serum was followed by a rapid decline. Much of the myo-inositol in foetal rabbit serum probably originates from the placenta, where on day 28 of gestation a high cyclase activity (527±64nmol·h−1·g of tissue−1) was measured. The gestational decline in serum myo-inositol concentration, together with the decreasing cyclase activity of the lungs, is consistent with the view that maturation of the lungs is accompanied by decreased availability of myo-inositol to this tissue.  相似文献   

15.
We isolated oryctin, a 66-residue peptide, from the hemolymph of the coconut rhinoceros beetle Oryctes rhinoceros and cloned its cDNA. Oryctin is dissimilar to any other known peptides in amino acid sequence, and its function has been unknown. To reveal that function, we determined the solution structure of recombinant 13C,15N-labeled oryctin by heteronuclear NMR spectroscopy. Oryctin exhibits a fold similar to that of Kazal-type serine protease inhibitors but has a unique additional C-terminal α-helix. We performed protease inhibition assays of oryctin against several bacterial and eukaryotic proteases. Oryctin does inhibit the following serine proteases: α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase, with Ki values of 3.9 × 10−10 m, 6.2 × 10−10 m, 1.4 × 10−9 m, and 1.2 × 10−8 m, respectively. Although the target molecule of oryctin in the beetle hemolymph remains obscure, our results showed that oryctin is a novel single domain Kazal-type inhibitor and could play a key role in protecting against bacterial infections.  相似文献   

16.
The pH of a 0.01 molar solution of glycine, half neutralized with NaOH, is 9.685. Addition of only one of the salts NaCl, KCl, MgCl2, or CaCl2 will lower the pH of the solution (at least up to 1 µ). If a given amount of KCl is added to a glycine solution, the subsequent addition of increasing amounts of NaCl will first raise the pH (up to 0.007 M NaCl). Further addition of NaCl (up to 0.035 M NaCl) will lower the pH, and further additions slightly raise the pH. The same type of curve is obtained by adding NaCl to glycine solution containing MgCl2 or CaCl2 except that the first and second breaks occur at 0.015 M and 0.085 M NaCl, respectively. Addition of CaCl2 to a glycine solution containing MgCl2 gives the same phenomena with breaks at 0.005 M and 0.025 M CaCl; or at ionic strengths of 0.015 µCaCl2 and 0.075 µCaCl2. This indicates that the effect is a function of the ionic strength of the added salt. These effects are sharp and unmistakable. They are almost identical with the effects produced by the same salt mixtures on the pH of gelatin solutions. They are very suggestive of physiological antagonisms, and at the same time cannot be attributed to colloidal phenomena.  相似文献   

17.
l Methionine decarboxylase (MetDC) from Streptomyces sp. 590 is a vitamin B6‐dependent enzyme and catalyzes the non‐oxidative decarboxylation of l methionine to produce 3‐methylthiopropylamine and carbon dioxide. We present here the crystal structures of the ligand‐free form of MetDC and of several enzymatic reaction intermediates. Group II amino acid decarboxylases have many residues in common around the active site but the residues surrounding the side chain of the substrate differ. Based on information obtained from the crystal structure, and mutational and biochemical experiments, we propose a key role for Gln64 in determining the substrate specificity of MetDC, and for Tyr421 as the acid catalyst that participates in protonation after the decarboxylation reaction.  相似文献   

18.
1. Comparison of the rates of activation of unfertilized starfish eggs in pure solutions of a variety of parthenogenetically effective organic acids (fatty acids, carbonic acid, benzoic and salicylic acids, chloro- and nitrobenzoic acids) shows that solutions which activate the eggs at the same rate, although widely different in molecular concentration, tend to be closely similar in CH. The dissociation constants of these acids range from 3.2 x 10–7 to 1.32 x 10–3. 2. In the case of each of the fourteen acids showing parthenogenetic action the rate of activation (within the favorable range of concentration) proved nearly proportional to the concentration of acid. The estimated CH of solutions exhibiting an optimum action with exposures of 10 minutes (at 20°) lay typically between 1.1 x 10–4 M and 2.1 x 10–4 M (pH = 3.7–3.96), and in most cases between 1.6 x 10–4 M and 2.1 x 10–4 M (pH = 3.7–3.8). Formic acid (CH = 4.2 x 10–4 M) and o-chlorobenzoic acid (CH = 3.5 x 10–4 M) are exceptions; o-nitrobenzoic acid is ineffective, apparently because of slow penetration. 3. Activation is not dependent on the penetration of H ions into the egg from without, as is shown by the effects following the addition of its Na salt to the solution of the activating acid (acetic, benzoic, salicylic). The rate of activation is increased by such addition, to a degree indicating that the parthenogenetically effective component of the external solution is the undissociated free acid. Apparently the undissociated molecules alone penetrate the egg freely. It is assumed that, having penetrated, they dissociate in the interior of the egg, furnishing there the H ions which effect activation. 4. Attention is drawn to certain parallels between the physiological conditions controlling activation in the starfish egg and in the vertebrate respiratory center.  相似文献   

19.
The shikimate pathway enzyme chorismate mutase converts chorismate into prephenate, a precursor of Tyr and Phe. The intracellular chorismate mutase (MtCM) of Mycobacterium tuberculosis is poorly active on its own, but becomes >100-fold more efficient upon formation of a complex with the first enzyme of the shikimate pathway, 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (MtDS). The crystal structure of the enzyme complex revealed involvement of C-terminal MtCM residues with the MtDS interface. Here we employed evolutionary strategies to probe the tolerance to substitution of the C-terminal MtCM residues from positions 84–90. Variants with randomized positions were subjected to stringent selection in vivo requiring productive interactions with MtDS for survival. Sequence patterns identified in active library members coincide with residue conservation in natural chorismate mutases of the AroQδ subclass to which MtCM belongs. An Arg-Gly dyad at positions 85 and 86, invariant in AroQδ sequences, was intolerant to mutation, whereas Leu88 and Gly89 exhibited a preference for small and hydrophobic residues in functional MtCM-MtDS complexes. In the absence of MtDS, selection under relaxed conditions identifies positions 84–86 as MtCM integrity determinants, suggesting that the more C-terminal residues function in the activation by MtDS. Several MtCM variants, purified using a novel plasmid-based T7 RNA polymerase gene expression system, showed that a diminished ability to physically interact with MtDS correlates with reduced activatability and feedback regulatory control by Tyr and Phe. Mapping critical protein-protein interaction sites by evolutionary strategies may pinpoint promising targets for drugs that interfere with the activity of protein complexes.  相似文献   

20.
1. The formation of adenosine 5′-phosphate, guanosine 5′-phosphate and inosine 5′-phosphate from [8-14C]adenine, [8-14C]guanine and [8-14C]hypoxanthine respectively in the presence of 5-phosphoribosyl pyrophosphate and an extract from Ehrlich ascites-tumour cells was assayed by a method involving liquid-scintillation counting of the radioactive nucleotides on diethylaminoethylcellulose paper. The results obtained with guanine were confirmed by a spectrophotometric assay which was also used to assay the conversion of 6-mercaptopurine and 5-phosphoribosyl pyrophosphate into 6-thioinosine 5′-phosphate in the presence of 6-mercaptopurine phosphoribosyltransferase from these cells. 2. At pH 7·8 and 25° the Michaelis constants for adenine, guanine and hypoxanthine were 0·9 μm, 2·9 μm and 11·0 μm in the assay with radioactive purines; the Michaelis constant for guanine in the spectrophotometric assay was 2·6 μm. At pH 7·9 the Michaelis constant for 6-mercaptopurine was 10·9 μm. 3. 25 μm-6-Mercaptopurine did not inhibit adenine phosphoribosyltransferase. 6-Mercaptopurine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 4·7 μm) and hypoxanthine phosphoribosyltransferase (Ki 8·3 μm). Hypoxanthine is a competitive inhibitor of guanine phosphoribosyltransferase (Ki 3·4 μm). 4. Differences in kinetic parameters and in the distribution of phosphoribosyltransferase activities after electrophoresis in starch gel indicate that different enzymes are involved in the conversion of adenine, guanine and hypoxanthine into their nucleotides. 5. From the low values of Ki for 6-mercaptopurine, and from published evidence that ascites-tumour cells require supplies of purines from the host tissues, it is likely that inhibition of hypoxanthine and guanine phosphoribosyltransferases by free 6-mercaptopurine is involved in the biological activity of this drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号