首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA mismatch repair suppresses gastrointestinal tumorgenesis. Four mammalian E. coli MutL homologues heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. To understand the mechanistic contributions of MLH3 and PMS2 in gastrointestinal tumor suppression, we generated Mlh3−/−;Apc1638N and Mlh3−/−;Pms2−/−;Apc1638N (MPA) mice. Mlh3 nullizygosity significantly increased Apc frameshift mutations and tumor multiplicity. Combined Mlh3;Pms2 nullizygosity further increased Apc base-substitution mutations. The spectrum of MPA tumor mutations was distinct from that observed in Mlh1−/−;Apc1638N mice, implicating the first potential role for MLH1/PMS1 in tumor suppression. Because Mlh3;Pms2 deficiency also increased gastrointestinal tumor progression, we used array-CGH to identify a recurrent tumor amplicon. This amplicon contained a previously uncharacterized Transducin enhancer of Split (Tle) family gene, Tle6-like. Expression of Tle6-like, or the similar human TLE6D splice isoform in colon cancer cells increased cell proliferation, colony-formation, cell migration, and xenograft tumorgenicity. Tle6-like;TLE6D directly interact with the gastrointestinal tumor suppressor RUNX3 and antagonize RUNX3 target transactivation. TLE6D is recurrently overexpressed in human colorectal cancers and TLE6D expression correlates with RUNX3 expression. Collectively, these findings provide important insights into the molecular mechanisms of individual MutL homologue tumor suppression and demonstrate an association between TLE mediated antagonism of RUNX3 and accelerated human colorectal cancer progression.  相似文献   

2.
Parasympathetic activity decreases heart rate (HR) by inhibiting pacemaker cells in the sinoatrial node (SAN). Dysregulation of parasympathetic influence has been linked to sinus node dysfunction and arrhythmia. RGS (regulator of G protein signaling) proteins are negative modulators of the parasympathetic regulation of HR and the prototypical M2 muscarinic receptor (M2R)-dependent signaling pathway in the SAN that involves the muscarinic-gated atrial K+ channel IKACh. Both RGS4 and RGS6-Gβ5 have been implicated in these processes. Here, we used Rgs4−/−, Rgs6−/−, and Rgs4−/−:Rgs6−/− mice to compare the relative influence of RGS4 and RGS6 on parasympathetic regulation of HR and M2R-IKACh-dependent signaling in the SAN. In retrogradely perfused hearts, ablation of RGS6, but not RGS4, correlated with decreased resting HR, increased heart rate variability, and enhanced sensitivity to the negative chronotropic effects of the muscarinic agonist carbachol. Similarly, loss of RGS6, but not RGS4, correlated with enhanced sensitivity of the M2R-IKACh signaling pathway in SAN cells to carbachol and a significant slowing of M2R-IKACh deactivation rate. Surprisingly, concurrent genetic ablation of RGS4 partially rescued some deficits observed in Rgs6−/− mice. These findings, together with those from an acute pharmacologic approach in SAN cells from Rgs6−/− and Gβ5−/− mice, suggest that the partial rescue of phenotypes in Rgs4−/−:Rgs6−/− mice is attributable to another R7 RGS protein whose influence on M2R-IKACh signaling is masked by RGS4. Thus, RGS6-Gβ5, but not RGS4, is the primary RGS modulator of parasympathetic HR regulation and SAN M2R-IKACh signaling in mice.  相似文献   

3.
Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels of N-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found that Faah−/− decidual cells progressively underwent premature senescence as marked by increased senescence-associated β-galactosidase (SA-β-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, in Faah−/− deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB in Faah−/− females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling.  相似文献   

4.

Background

Human PMS2 (hPMS2) homologues act to nick 5′ and 3′ to misincorporated nucleotides during mismatch repair in organisms that lack MutH. Mn++ was previously found to stimulate the endonuclease activity of these homologues. ATP was required for the nicking activity of hPMS2 and yPMS1, but was reported to inhibit bacterial MutL proteins from Thermus thermophilus and Aquifex aeolicus that displayed homology to hPMS2. Mutational analysis has identified the DQHA(X)2E(X)4E motif present in the C-terminus of PMS2 homologues as important for endonuclease activity.

Methodologies/Principal Findings

We examined the effect ATP had on the Mn++ induced nicking of supercoiled pBR322 by full-length and mutant A. aeolicus MutL (Aae MutL) proteins. Assays were single time point, enzyme titration experiments or reaction time courses. The maximum velocity for MutL nicking was determined to be 1.6±0.08×10−5 s−1 and 4.2±0.3×10−5 s−1 in the absence and presence of ATP, respectively. AMPPNP stimulated the nicking activity to a similar extent as ATP. A truncated Aae MutL protein composed of only the C-terminal 123 amino acid residues was found to nick supercoiled DNA. Furthermore, mutations in the conserved C-terminal DQHA(X)2E(X)4E and CPHGRP motifs were shown to abolish Aae MutL endonuclease activity.

Conclusions

ATP stimulated the Mn++ induced endonuclease activity of Aae MutL. Experiments utilizing AMPPNP implied that the stimulation did not require ATP hydrolysis. A mutation in the DQHA(X)2E(X)4E motif of Aae MutL further supported the role of this region in endonclease activity. For the first time, to our knowledge, we demonstrate that changing the histidine residue in the conserved CPHGRP motif abolishes endonucleolytic activity of a hPMS2 homologue. Finally, the C-terminal 123 amino acid residues of Aae MutL were sufficient to display Mn++ induced nicking activity.  相似文献   

5.
6.
Patients with autoimmune lymphoproliferative syndrome (ALPS) and lymphoproliferation (LPR) mice are deficient in Fas, and accumulate large numbers of αβ-TCR+, CD4, CD8 double negative (DN) T cells. The function of these DN T cells remains largely unknown. The common γ subunit of the activating Fc receptors, FcRγ, plays an important role in mediating innate immune responses. We have shown previously that a significant proportion of DN T cells express FcRγ, and that this molecule is required for TCR transgenic DN T cells to suppress allogeneic immune responses. Whether FcRγ plays a critical role in LPR DN T cell-mediated suppression of immune responses to auto and allo-antigens is not known. Here, we demonstrated that FcRγ+, but not FcRγ LPR DN T cells could suppress Fas+ CD4+ and CD8+ T cell proliferation in vitro and attenuated CD4+ T cell-mediated graft-versus host disease. Although FcRγ expression did not allow LPR DN T cells to inhibit the expansion of Fas-deficient cells within the LPR context, adoptive transfer of FcRγ+, but not FcRγ, DN T cells inhibited lymphoproliferation in generalized lymphoproliferative disease (GLD) mice. Furthermore, FcRγ acted in a cell-intrinsic fashion to limit DN T cell accumulation by increasing the rate of apoptosis in proliferated cells. These results indicate that FcRγ can confer Fas-dependent regulatory properties on LPR DN T cells, and suggest that FcRγ may be a novel marker for functional DN Tregs.  相似文献   

7.
Frequent alteration of upstream proto-oncogenes and tumor suppressor genes activates mechanistic target of rapamycin (mTOR) and causes cancer. However, the downstream effectors of mTOR remain largely elusive. Here we report that brain-expressed X-linked 2 (BEX2) is a novel downstream effector of mTOR. Elevated BEX2 in Tsc2−/− mouse embryonic fibroblasts, Pten−/− mouse embryonic fibroblasts, Tsc2-deficient rat uterine leiomyoma cells, and brains of neuronal specific Tsc1 knock-out mice were abolished by mTOR inhibitor rapamycin. Furthermore, BEX2 was also increased in the liver of a hepatic specific Pten knock-out mouse and the kidneys of Tsc2 heterozygous deletion mice, and a patient with tuberous sclerosis complex (TSC). mTOR up-regulation of BEX2 was mediated in parallel by both STAT3 and NF-κB. BEX2 was involved in mTOR up-regulation of VEGF production and angiogenesis. Depletion of BEX2 blunted the tumorigenesis of cells with activated mTOR. Therefore, enhanced STAT3/NF-κB-BEX2-VEGF signaling pathway contributes to hyperactive mTOR-induced tumorigenesis. BEX2 may be targeted for the treatment of the cancers with aberrantly activated mTOR signaling pathway.  相似文献   

8.
The relationship between high-density lipoprotein and pulmonary function is unclear. To determine mechanistic relationships we investigated the effects of genetic deletion of apolipoprotein A-I (apoA-I) on plasma lipids, paraoxonase (PON1), pro-inflammatory HDL (p-HDL), vasodilatation, airway hyperresponsiveness and pulmonary oxidative stress, and inflammation. ApoA-I null (apoA-I−/−) mice had reduced total and HDL cholesterol but increased pro-inflammatory HDL compared with C57BL/6J mice. Although PON1 protein was increased in apoA-I−/− mice, PON1 activity was decreased. ApoA-I deficiency did not alter vasodilatation of facialis arteries, but it did alter relaxation responses of pulmonary arteries. Central airway resistance was unaltered. However, airway resistance mediated by tissue dampening and elastance were increased in apoA-I−/− mice, a finding also confirmed by positive end-expiratory pressure (PEEP) studies. Inflammatory cells, collagen deposition, 3-nitrotyrosine, and 4-hydroxy-2-nonenal were increased in apoA-I−/− lungs but not oxidized phospholipids. Colocalization of 4-hydroxy-2-nonenal with transforming growth factor β-1 (TGFβ-1 was increased in apoA-I−/− lungs. Xanthine oxidase, myeloperoxidase and endothelial nitric oxide synthase were increased in apoA-I−/− lungs. Dichlorodihydrofluorescein-detectable oxidants were increased in bronchoalveolar lavage fluid (BALF) in apoA-I−/− mice. In contrast, BALF nitrite+nitrate levels were decreased in apoA-I−/− mice. These data demonstrate that apoA-I plays important roles in limiting pulmonary inflammation and oxidative stress, which if not prevented, will decrease pulmonary artery vasodilatation and increase airway hyperresponsiveness.  相似文献   

9.
Non-homologous end joining (NHEJ) and homologous recombination (HR) are pathways that repair DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae, the repair of these breaks is influenced by histone acetylation. Therefore, we tested mammalian cells deleted for NHEJ (Ku80 or DNA Ligase IV) or altered for HR (breast cancer associated gene, Brca2, or Bloom's syndrome, Blm) for sensitivity to trichostatin A (TSA), a histone deacetylase inhibitor that is being investigated as an anti-cancer therapeutic. We show that cells mutated for Ku80 (ku80−/−) or DNA Ligase IV (lig 4−/−), but not cells mutated for Brca2 (brca2lex1/lex2) or Blm (blmtm3Brd/tm4Brd), are hypersensitive to TSA in a dose-dependent manner. TSA-induced toxicity stimulates apoptosis and cell cycle checkpoint responses independent of p53, but does not increase phosphorylated histone H2AX (γ-H2AX) as compared with a clastogenic agent, camptothecin, indicating that the quantity of DSBs is not the primary cause of TSA-induced cell death. In addition, we show that potential anti-cancer drugs (LY-294002 and vanillin) that inhibit the family of phosphatidylinositol 3 kinases that include the NHEJ protein, DNA–PKCS act in synergy with TSA to reduce the viability of HeLa cells in tissue culture presenting the possibility of using the two drugs in combination to treat cancer.  相似文献   

10.
Topoisomerase inhibitors such as camptothecin and etoposide are used as anti-cancer drugs and induce double-strand breaks (DSBs) in genomic DNA in cycling cells. These DSBs are often covalently bound with polypeptides at the 3′ and 5′ ends. Such modifications must be eliminated before DSB repair can take place, but it remains elusive which nucleases are involved in this process. Previous studies show that CtIP plays a critical role in the generation of 3′ single-strand overhang at “clean” DSBs, thus initiating homologous recombination (HR)–dependent DSB repair. To analyze the function of CtIP in detail, we conditionally disrupted the CtIP gene in the chicken DT40 cell line. We found that CtIP is essential for cellular proliferation as well as for the formation of 3′ single-strand overhang, similar to what is observed in DT40 cells deficient in the Mre11/Rad50/Nbs1 complex. We also generated DT40 cell line harboring CtIP with an alanine substitution at residue Ser332, which is required for interaction with BRCA1. Although the resulting CtIPS332A/−/− cells exhibited accumulation of RPA and Rad51 upon DNA damage, and were proficient in HR, they showed a marked hypersensitivity to camptothecin and etoposide in comparison with CtIP+/−/− cells. Finally, CtIPS332A/−/−BRCA1−/− and CtIP+/−/−BRCA1−/− showed similar sensitivities to these reagents. Taken together, our data indicate that, in addition to its function in HR, CtIP plays a role in cellular tolerance to topoisomerase inhibitors. We propose that the BRCA1-CtIP complex plays a role in the nuclease-mediated elimination of oligonucleotides covalently bound to polypeptides from DSBs, thereby facilitating subsequent DSB repair.  相似文献   

11.
The relationship between the production of reactive oxygen species and the hypersensitive response (HR) of tobacco (Nicotiana tabacum L.) toward an incompatible race of the Oomycete Phytophthora parasitica var nicotianae has been investigated. A new assay for superoxide radical (O2) production based on reduction of the tetrazolium dye sodium,3′-(1-[phenylamino-carbonyl]-3,4-tetrazolium)-bis(4-methoxy-6-nitro) benzene-sulfonic acid hydrate (XTT) has enabled the quantitative estimation of perhydroxyl/superoxide radical acid-base pair (HO2·/O2) production during the resistant response. Tobacco suspension cells were inoculated with zoospores from compatible or incompatible races of the pathogen. Subsequent HO2·/O2 production was monitored by following the formation of XTT formazan. In the incompatible interaction only, HO2·/O2 was produced in a minor burst between 0 and 2 h and then in a major burst between 8 and 10 h postinoculation. During this second burst, rates of XTT reduction equivalent to a radical flux of 9.9 × 10−15 mol min−1 cell−1 were observed. The HO2·/O2 scavengers O2 dismutase and Mn(III)desferal each inhibited dye reduction. An HR was observed in challenged, resistant cells immediately following the second burst of radical production. Both scavengers inhibited the HR when added prior to the occurrence of either radical burst, indicating that O2 production is a necessary precursor to the HR.  相似文献   

12.
13.
During luteinization, circulating high-density lipoproteins supply cholesterol to ovarian cells via the scavenger receptor-B1 (SCARB1). In the mouse, SCARB1 is expressed in cytoplasm and periphery of theca, granulosa, and cumulus cells of developing follicles and increases dramatically during formation of corpora lutea. Blockade of ovulation in mice with meloxicam, a prostaglandin synthase-2 inhibitor, resulted in follicles with oocytes entrapped in unexpanded cumulus complexes and with granulosa cells with luteinized morphology and expressing SCARB1 characteristic of luteinization. Mice bearing null mutation of the Scarb1 gene (SCARB1−/−) had ovaries with small corpora lutea, large follicles with hypertrophied theca cells, and follicular cysts with blood-filled cavities. Plasma progesterone concentrations were decreased 50% in mice with Scarb1 gene disruption. When SCARB1−/− mice were treated with a combination of mevinolin [an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR)] and chloroquine (an inhibitor of lysosomal processing of low-density lipoproteins), serum progesterone was further reduced. HMGR protein expression increased in SCARB1−/− mice, independent of treatment. It was concluded that theca, granulosa, and cumulus cells express SCARB1 during follicle development, but maximum expression depends on luteinization. Knockout of SCARB1−/− leads to ovarian pathology and suboptimal luteal steroidogenesis. Therefore, SCARB1 expression is essential for maintaining normal ovarian cholesterol homeostasis and luteal steroid synthesis.  相似文献   

14.
Il1rn−/− mice spontaneously develop arthritis and aortitis by an autoimmune mechanism and also develop dermatitis by an autoinflammatory mechanism. Here, we show that Rag2−/−Il1rn−/− mice develop spontaneous colitis with high mortality, making a contrast to the suppression of arthritis in these mice. Enhanced IL-17A expression in group 3 innate lymphoid cells (ILC3s) was observed in the colon of Rag2−/−Il1rn−/− mice. IL-17A-deficiency prolonged the survival of Rag2−/−Il1rn−/− mice, suggesting a pathogenic role of this cytokine in the development of intestinal inflammation. Although IL-17A-producing T cells were increased in Il1rn−/− mice, these mice did not develop colitis, because CD4+Foxp3+ regulatory T cell population was also expanded. Thus, excess IL-1 signaling and IL-1-induced IL-17A from ILC3s cause colitis in Rag2−/−Il1rn−/− mice in which Treg cells are absent. These observations suggest that the balance between IL-17A-producing cells and Treg cells is important to keep the immune homeostasis of the colon.  相似文献   

15.
Aortic aneurysm is dilation of the aorta primarily due to degradation of the aortic wall extracellular matrix (ECM). Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs), the proteases that degrade the ECM. Timp3 is the only ECM-bound Timp, and its levels are altered in the aorta from patients with abdominal aortic aneurysm (AAA). We investigated the causal role of Timp3 in AAA formation. Infusion of angiotensin II (Ang II) using micro-osmotic (Alzet) pumps in Timp3−/− male mice, but not in wild type control mice, led to adverse remodeling of the abdominal aorta, reduced collagen and elastin proteins but not mRNA, and elevated proteolytic activities, suggesting excess protein degradation within 2 weeks that led to formation of AAA by 4 weeks. Intriguingly, despite early up-regulation of MMP2 in Timp3−/−Ang II aortas, additional deletion of Mmp2 in these mice (Timp3−/−/Mmp2−/−) resulted in exacerbated AAA, compromised survival due to aortic rupture, and inflammation in the abdominal aorta. Reconstitution of WT bone marrow in Timp3−/−/Mmp2−/− mice reduced inflammation and prevented AAA in these animals following Ang II infusion. Treatment with a broad spectrum MMP inhibitor (PD166793) prevented the Ang II-induced AAA in Timp3−/− and Timp3−/−/Mmp2−/− mice. Our study demonstrates that the regulatory function of TIMP3 is critical in preventing adverse vascular remodeling and AAA. Hence, replenishing TIMP3, a physiological inhibitor of a number of metalloproteinases, could serve as a therapeutic approach in limiting AAA development or expansion.  相似文献   

16.
17.
Mut L homolog-1 (MLH1) is a key DNA mismatch repair protein which participates in the sensitivity to DNA damaging agents. However, its role in the radiosensitivity of tumor cells is less well characterized. In this study, we investigated the role of MLH1 in cellular responses to ionizing radiation (IR) and explored the signaling molecules involved. The isogenic pair of MLH1 proficient (MLH1+) and deficient (MLH1) human colorectal cancer HCT116 cells was exposed to IR for 24 h at the dose of 3 cGy. The clonogenic survival was examined by the colony formation assay. Cell cycle distribution was analyzed with flow cytometry. Changes in the protein level of MLH1, DNA damage marker γH2AX, and protein kinase A catalytic subunit (PRKAC), a common target for anti-tumor drugs, were examined with Western blotting. The results showed that the HCT116 (MLH1+) cells demonstrated increased radio-resistance with increased S population, decreased G2 population, a low level of γH2AX, a reduced ratio of phosphorylated PRKACαβ to total PRKAC, and an elevated level of total PRKAC and phosphorylated PRKACβII following IR compared with the HCT116 (MLH1) cells. Importantly, silencing PRKAC in HCT116 (MLH1+) cells increased the cellular radiosensitivity. In conclusion, MLH1 may increase cellular resistance to IR by activating PRKAC. Our finding is the first to demonstrate the important role of PRKAC in MLH1-mediated radiosensitivity, suggesting that PRKAC has potential as a biomarker and a therapeutic target for increasing radio-sensitization.  相似文献   

18.
We have previously reported that Ahnak-mediated TGFβ signaling leads to down-regulation of c-Myc expression. Here, we show that inhibition of Ahnak can promote generation of induced pluripotent stem cells (iPSC) via up-regulation of endogenous c-Myc. Consistent with the c-Myc inhibitory role of Ahnak, mouse embryonic fibroblasts from Ahnak-deficient mouse (Ahnak−/− MEF) show an increased level of c-Myc expression compared with wild type MEF. Generation of iPSC with just three of the four Yamanaka factors, Oct4, Sox2, and Klf4 (hereafter 3F), was significantly enhanced in Ahnak−/− MEF. Similar results were obtained when Ahnak-specific shRNA was applied to wild type MEF. Of note, expressionof Ahnak was significantly induced during the formation of embryoid bodies from embryonic stem cells, suggesting that Ahnak-mediated c-Myc inhibition is involved in embryoid body formation and the initial differentiation of pluripotent stem cells. The iPSC from 3F-infected Ahnak−/− MEF cells (Ahnak−/−-iPSC-3F) showed expression of all stem cell markers examined and the capability to form three primary germ layers. Moreover, injection of Ahnak−/−-iPSC-3F into athymic nude mice led to development of teratoma containing tissues from all three primary germ layers, indicating that iPSC from Ahnak−/− MEF are bona fide pluripotent stem cells. Taken together, these data provide evidence for a new role for Ahnak in cell fate determination during development and suggest that manipulation of Ahnak and the associated signaling pathway may provide a means to regulate iPSC generation.  相似文献   

19.
Oxidants derived from myeloperoxidase (MPO) contribute to inflammatory diseases. In vivo MPO activity is commonly assessed by the accumulation of 3-chlorotyrosine (3-Cl-Tyr), although 3-Cl-Tyr is formed at low yield and is subject to metabolism. Here we show that MPO activity can be assessed using hydroethidine (HE), a probe commonly employed for the detection of superoxide. Using LC/MS/MS, 1H NMR, and two-dimensional NOESY, we identified 2-chloroethidium (2-Cl-E+) as a specific product when HE was exposed to hypochlorous acid (HOCl), chloramines, MPO/H2O2/chloride, and activated human neutrophils. The rate constant for HOCl-mediated conversion of HE to 2-Cl-E+ was estimated to be 1.5 × 105 m−1s−1. To investigate the utility of 2-Cl-E+ to assess MPO activity in vivo, HE was injected into wild-type and MPO-deficient (Mpo−/−) mice with established peritonitis or localized arterial inflammation, and tissue levels of 2-Cl-E+ and 3-Cl-Tyr were then determined by LC/MS/MS. In wild-type mice, 2-Cl-E+ and 3-Cl-Tyr were detected readily in the peritonitis model, whereas in the arterial inflammation model 2-Cl-E+ was present at comparatively lower concentrations (17 versus 0.3 pmol/mg of protein), and 3-Cl-Tyr could not be detected. Similar to the situation with 3-Cl-Tyr, tissue levels of 2-Cl-E+ were decreased substantially in Mpo−/− mice, indicative of the specificity of the assay. In the arterial inflammation model, 2-Cl-E+ was absent from non-inflamed arteries and blood, suggesting that HE oxidation occurred locally in the inflamed artery. Our data suggest that the conversion of exogenous HE to 2-Cl-E+ may be a useful selective and sensitive marker for MPO activity in addition to 3-Cl-Tyr.  相似文献   

20.
Studies of human NK cells and their role in tumor suppression have largely been restricted to in vitro experiments which lack the complexity of whole organisms, or mouse models which differ significantly from humans. In this study we showed that, in contrast to C57BL/6 Rag2−/−c −/− and NOD/Scid mice, newborn BALB/c Rag2−/−c −/− mice can support the development of human NK cells and CD56+ T cells after intrahepatic injection with hematopoietic stem cells. The human CD56+ cells in BALB/c Rag2−/−c −/− mice were able to produce IFN-γ in response to human IL-15 and polyI:C. NK cells from reconstituted Rag2−/−c −/− mice were also able to kill and inhibit the growth of K562 cells in vitro and were able to produce IFN-γ in response to stimulation with K562 cells. In vivo, reconstituted Rag2−/−c −/− mice had higher survival rates after K562 challenge compared to non-reconstituted Rag2−/−c −/− mice and were able to control tumor burden in various organs. Reconstituted Rag2−/−c −/− mice represent a model in which functional human NK and CD56+ T cells can develop from stem cells and can thus be used to study human disease in a more clinically relevant environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号