首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of cancer cachexia and chemotherapy and subsequent recovery of skeletal muscle protein mass and turnover was investigated in mice. Cancer cachexia was induced using colon 26 adenocarcinoma, which is characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C(6)H(12)CIN(3)O(4)S). Reduced food intake was not a factor in these studies. Three days after cachexia began, healthy and tumor-bearing mice were given a single intraperitoneal injection of cystemustine (20 mg/kg). Skeletal muscle mass in tumor-bearing mice was 41% lower (P < 0.05) than in healthy mice 2 wk after cachexia began. Skeletal muscle wasting was mediated initially by decreased protein synthesis (-38%; P < 0.05) and increased degradation (+131%; P < 0.05); later wasting resulted solely from decreased synthesis (~-54 to -69%; P < 0.05). Acute cytotoxicity of chemotherapy did not appear to have an important effect on skeletal muscle protein metabolism in either healthy or tumor-bearing mice. Recovery began 2 days after treatment; skeletal muscle mass was only 11% lower than in healthy mice 11 days after chemotherapy. Recovery of skeletal muscle mass was affected initially by decreased protein degradation (-80%; P < 0.05) and later by increased protein synthesis (+46 to +73%; P < 0.05) in cured compared with healthy mice. This study showed that skeletal muscle wasted from cancer cachexia and after chemotherapeutic treatment is able to generate a strong anabolic response by making powerful changes to protein synthesis and degradation.  相似文献   

2.
Cancer cachexia describes the progressive skeletal muscle wasting and weakness in many cancer patients and accounts for >20% of cancer-related deaths. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the atrophy and loss of function in muscles of tumor-bearing mice. Twelve-week-old C57BL/6 mice received a subcutaneous injection of saline (control) or Lewis lung carcinoma (LLC) tumor cells. One week later, mice received either once weekly injections of saline (control, n = 12; LLC, n = 9) or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg·kg?1·wk?1, LLC+PF-354, n = 11) for 5 wk. Injection of LLC cells reduced muscle mass and maximum force of tibialis anterior (TA) muscles by 8-10% (P < 0.05), but the muscle atrophy and weakness were prevented with PF-354 treatment (P > 0.05). Maximum specific (normalized) force of diaphragm muscle strips was reduced with LLC injection (P < 0.05) but was not improved with PF-354 treatment (P > 0.05). PF-354 enhanced activity of oxidative enzymes in TA and diaphragm muscles of tumor-bearing mice by 118% and 89%, respectively (P < 0.05). Compared with controls, apoptosis that was not of myofibrillar or satellite cell origin was 140% higher in TA muscle cross sections from saline-treated LLC tumor-bearing mice (P < 0.05) but was not different in PF-354-treated tumor-bearing mice (P > 0.05). Antibody-directed myostatin inhibition attenuated the skeletal muscle atrophy and loss of muscle force-producing capacity in a murine model of cancer cachexia, in part by reducing apoptosis. The improvements in limb muscle mass and function highlight the therapeutic potential of antibody-directed myostatin inhibition for cancer cachexia.  相似文献   

3.
《Journal of molecular biology》2019,431(15):2674-2686
Cancer cachexia is a multifactorial syndrome characterized by anorexia, weight loss and muscle wasting that impairs patients' quality of life and survival. Aim of this work was to evaluate the impact of either autophagy inhibition (knocking down beclin-1) or promotion (overexpressing TP53INP2/DOR) on cancer-induced muscle wasting. In C26 tumor-bearing mice, stress-induced autophagy inhibition was unable to rescue the loss of muscle mass and worsened muscle morphology. Treating C26-bearing mice with formoterol, a selective β2-agonist, muscle sparing was paralleled by reduced static autophagy markers, although the flux was maintained. Conversely, the stimulation of muscle autophagy exacerbated muscle atrophy in tumor-bearing mice. TP53INP2 further promoted atrogene expression and suppressed mitochondrial dynamics-related genes. Excessive autophagy might impair mitochondrial function through mitophagy. Consistently, tumor-induced mitochondrial dysfunction was detected by reduced ex vivo muscle fiber respiration. Overall, the results evoke a central role for muscle autophagy in cancer-induced muscle wasting.  相似文献   

4.
Cachexia occurs in patients with advanced cancers. Despite the adverse clinical impact of cancer-induced muscle wasting, pathways causing cachexia are controversial, and clinically reliable therapies are not available. A trigger of muscle protein loss is the Jak/Stat pathway, and indeed, we found that conditioned medium from C26 colon carcinoma (C26) or Lewis lung carcinoma cells activates Stat3 (p-Stat3) in C2C12 myotubes. We identified two proteolytic pathways that are activated in muscle by p-Stat3; one is activation of caspase-3, and the other is p-Stat3 to myostatin, MAFbx/Atrogin-1, and MuRF-1 via CAAT/enhancer-binding protein δ (C/EBPδ). Using sequential deletions of the caspase-3 promoter and CHIP assays, we determined that Stat3 activation increases caspase-3 expression in C2C12 cells. Caspase-3 expression and proteolytic activity were stimulated by p-Stat3 in muscles of tumor-bearing mice. In mice with cachexia caused by Lewis lung carcinoma or C26 tumors, knock-out of p-Stat3 in muscle or with a small chemical inhibitor of p-Stat3 suppressed muscle mass losses, improved protein synthesis and degradation in muscle, and increased body weight and grip strength. Activation of p-Stat3 stimulates a pathway from C/EBPδ to myostatin and expression of MAFbx/Atrogin-1 and increases the ubiquitin-proteasome system. Indeed, C/EBPδ KO decreases the expression of MAFbx/Atrogin-1 and myostatin, while increasing muscle mass and grip strength. In conclusion, cancer stimulates p-Stat3 in muscle, activating protein loss by stimulating caspase-3, myostatin, and the ubiquitin-proteasome system. These results could lead to novel strategies for preventing cancer-induced muscle wasting.  相似文献   

5.
Tandem mass tag (TMT)-based quantitative proteomics was used to examine protein expression in skeletal muscle from mice with moderate and severe cancer cachexia to study mechanisms underlying varied cachexia severity. Weight loss of 10% (moderate) and 20% (severe) was induced by injection of colon-26 cancer cells in 10-week old Balb/c mice. In moderate cachexia, enriched pathways reflected fibrin formation, integrin/mitogen-activated protein kinase (MAPK) signaling, and innate immune system, suggesting an acute phase response and fibrosis. These pathways remained enriched in severe cachexia; however, energy-yielding pathways housed in mitochondria were prominent additions to the severe state. These enrichments suggest distinct muscle proteome expression patterns that differentiate cachexia severity. When analyzed with two other mouse models, eight differentially expressed targets were shared including serine protease inhibitor A3N (Serpina3n), synaptophysin-like protein 2 (Sypl2), Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial (Idh3a), peroxisomal acyl-coenzyme A oxidase 1 (Acox1), collagen alpha-1(VI) chain (Col6a1), myozenin 3 (Myoz3), UDP-glucose pyrophosphorylase (Ugp2), and solute carrier family 41 member 3 (Slc41a3). Acox1 and Idh3a control lipid oxidation and NADH generation in the TCA cycle, respectively, and Col6a1 comprises part of type VI collagen with reported profibrotic functions, suggesting influential roles in cachexia. A potential target was identified in fragile X mental retardation syndrome-related protein 1 (FXR1), an RNA-binding protein not previously implicated in cancer cachexia. FXR1 decreased in cachexia and related linearly with weight change and myofiber size. These findings suggest distinct mechanisms associated with cachexia severity and potential biomarkers and therapeutic targets.  相似文献   

6.
Cancer-associated cachexia is a complex metabolic condition characterized by the progressive loss of body fat and deterioration of muscle mass. Although the cellular and molecular mechanisms of cachexia are incompletely understood, previous studies have suggested mitochondrial dysfunction in murine models of cancer cachexia. To better understand the metabolic shift in cancer-induced cachexia, we studied the effects of enhanced oxidative capacity on muscle wasting using transgenic mice over-expressing Peroxisome Proliferator-Activated Receptor gamma Co-activator-1α (PGC-1α) in skeletal muscle in a Lewis lung carcinoma-implanted model. Increased mitochondrial biogenesis was observed in the skeletal muscle of tumor-implanted mice. However, these increases did not prevent or reverse muscle wasting in mice harboring tumors. Moreover, tumor size was increased in muscle PGC-1α over-expressing mice. We found similar levels of circulating inflammatory cytokines in tumor-implanted animals, which was not affected by increased muscle expression of PGC-1α. Our data indicated that increased mitochondrial biogenesis in skeletal muscle is not sufficient to rescue tumor-associated, acute muscle loss, and could promote tumor growth, possibly through the release of myokines.  相似文献   

7.
According to the concept of lipotoxicity, ectopic accumulation of lipids in non-adipose tissue induces pathological changes. The most prominent effects are seen in fatty liver disease, lipid cardiomyopathy, non-insulin-dependent diabetes mellitus, insulin resistance and skeletal muscle myopathy. We used the MCK(m)-hLPL mouse distinguished by skeletal and cardiac muscle-specific human lipoprotein lipase (hLPL) overexpression to investigate effects of lipid overload in skeletal muscle. We were intrigued to find that ectopic lipid accumulation induced proteasomal activity, apoptosis and skeletal muscle damage. In line with these findings we observed reduced Musculus gastrocnemius and Musculus quadriceps mass in transgenic animals, accompanied by severely impaired physical endurance. We suggest that muscle loss was aggravated by impaired muscle regeneration as evidenced by reduced cross-sectional area of regenerating myofibers after cardiotoxin-induced injury in MCK(m)-hLPL mice. Similarly, an almost complete loss of myogenic potential was observed in C2C12 murine myoblasts upon overexpression of LPL. Our findings directly link lipid overload to muscle damage, impaired regeneration and loss of performance. These findings support the concept of lipotoxicity and are a further step to explain pathological effects seen in muscle of obese patients, patients with the metabolic syndrome and patients with cancer-associated cachexia.  相似文献   

8.
Cachexia is characterized as an inflammatory state induced by the cancer environment, which is accompanied by the loss of muscle and fat mass. Well-investigated mechanisms of cachexia include the suppression of myofiber protein synthesis and the induction of the protein degradation. However, it is not well characterized whether chronic inflammation during cachexia induces myofiber degeneration, which contributes to muscle mass loss and decreased functional capacity. The purpose of this study was to determine whether Apc(Min/+) mice, which demonstrate a chronic systemic inflammatory state due to an intestinal tumor burden, undergo cachexia and whether the myofibers exhibit signs of degeneration and/or regeneration. Six-month-old female Apc(Min/+) body weight decreased 21% compared with C57BL/6 mice and was not the result of blunted growth. Apc(Min/+) gastrocnemius muscle was reduced 45%, and soleus mean fiber cross-sectional area decreased 24% vs. C57BL/6 mice. Soleus muscle morphology demonstrated pathology of myofibers undergoing degeneration and/or regeneration. These data demonstrate that the Apc(Min/+) mouse becomes cachectic by 6 mo of age and that skeletal muscle degeneration and regeneration may be related to the muscle loss.  相似文献   

9.

Background

The onset of cachexia is a frequent feature in cancer patients. Prominent characteristic of this syndrome is the loss of body and muscle weight, this latter being mainly supported by increased protein breakdown rates. While the signaling pathways dependent on IGF-1 or myostatin were causally involved in muscle atrophy, the role of the Mitogen-Activated-Protein-Kinases is still largely debated. The present study investigated this point on mice bearing the C26 colon adenocarcinoma.

Methodology/Principal Findings

C26-bearing mice display a marked loss of body weight and muscle mass, this latter associated with increased phosphorylated (p)-ERK. Administration of the ERK inhibitor PD98059 to tumor bearers attenuates muscle depletion and weakness, while restoring normal atrogin-1 expression. In C26 hosts, muscle wasting is also associated with increased Pax7 expression and reduced myogenin levels. Such pattern, suggestive of impaired myogenesis, is reversed by PD98059. Increased p-ERK and reduced myosin heavy chain content can be observed in TNFα-treated C2C12 myotubes, while decreased myogenin and MyoD levels occur in differentiating myoblasts exposed to the cytokine. All these changes are prevented by PD98059.

Conclusions/Significance

These results demonstrate that ERK is involved in the pathogenesis of muscle wasting in cancer cachexia and could thus be proposed as a therapeutic target.  相似文献   

10.
BackgroundPhysical inactivity contributes to muscle wasting and reductions in mitochondrial oxidative phenotype (OXPHEN), reducing physical performance and quality of life during aging and in chronic disease. Previously, it was shown that inactivation of glycogen synthase kinase (GSK)-3β stimulates muscle protein accretion, myogenesis, and mitochondrial biogenesis. Additionally, GSK-3β is inactivated during recovery of disuse-induced muscle atrophy.AimTherefore, we hypothesize that GSK-3 inhibition is required for reloading-induced recovery of skeletal muscle mass and OXPHEN.MethodsWild-type (WT) and whole-body constitutively active (C.A.) Ser21/9 GSK-3α/β knock-in mice were subjected to a 14-day hind-limb suspension/14-day reloading protocol. Soleus muscle mass, fiber cross-sectional area (CSA), OXPHEN (abundance of sub-units of oxidative phosphorylation (OXPHOS) complexes and fiber-type composition), as well as expression levels of their main regulators (respectively protein synthesis/degradation, myogenesis and peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) signaling) were monitored.ResultsSubtle but consistent differences suggesting suppression of protein turnover signaling and decreased expression of several OXPHOS sub-units and PGC-1α signaling constituents were observed at baseline in C.A. GSK-3 versus WT mice. Although soleus mass recovery during reloading occurred more rapidly in C.A. GSK-3 mice, this was not accompanied by a parallel increased CSA. The OXPHEN response to reloading was not distinct between C.A. GSK-3 and WT mice. No consistent or significant differences in reloading-induced changes in the regulatory steps of protein turnover, myogenesis or muscle OXPHEN were observed in C.A. GSK-3 compared to WT muscle.ConclusionThis study indicates that GSK-3 inactivation is dispensable for reloading-induced recovery of muscle mass and OXPHEN.  相似文献   

11.
In two different experimental models of cancer cachexia, the rat Yoshida AH-130 ascites hepatoma and the mouse Lewis lung carcinoma, the implantation of the tumor caused a loss of body weight which was associated with a reduction in the weight of different skeletal muscles, as well as with their protein content. The decrease in protein content was accompanied by a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumor-bearing animals as compared with the non-tumor-bearing controls. Analysis of DNA fragmentation in skeletal muscle clearly showed enhanced laddering in the skeletal muscle of tumor-bearing animals, suggesting an apoptotic phenomenon. Interestingly, the degree of laddering (total DNA fragmented) increased with tumor burden. These results suggest that DNA fragmentation may be a primary event in cancer-associated cachexia.  相似文献   

12.
Joppa MA  Gogas KR  Foster AC  Markison S 《Peptides》2007,28(3):636-642
Cachexia is a clinical wasting syndrome that occurs in multiple disease states, and is associated with anorexia and a progressive loss of body fat and lean mass. The development of new therapeutics for this disorder is needed due to poor efficacy and multiple side effects of current therapies. The pivotal role played by the central melanocortin system in regulating body weight has made this an attractive target for novel cachexia therapies. The mixed melanocortin receptor antagonist AgRP is an endogenous peptide that induces hyperphagia. Here, we used AgRP(83-132) to investigate the ability of melanocortin antagonism to protect against clinical features of cachexia in two distinct animal models. In an acute model, food intake and body weight gain were reduced in mice exposed to radiation (300 RAD), and delivery of AgRP(83-132) into the lateral cerebral ventricle prevented these effects. In a chronic tumor cachexia model, adult mice were injected subcutaneously with a cell line derived from murine colon-26 adenocarcinoma. Typical of cachexia, tumor-bearing mice progressively reduced body weight and food intake, and gained significantly less muscle mass than controls. Administration of AgRP(83-132) into the lateral ventricles significantly increased body weight and food intake, and changes in muscle mass were similar to the tumor-free control mice. These findings support the idea that antagonism of the central melanocortin system can reduce the negative impact of cachexia and radiation therapy.  相似文献   

13.
Many diseases are associated with catabolic conditions that induce skeletal muscle wasting. These various catabolic states may have similar and distinct mechanisms for inducing muscle protein loss. Mechanisms related to muscle wasting may also be related to muscle metabolism since glycolytic muscle fibers have greater wasting susceptibility with several diseases. The purpose of this study was to determine the relationship between muscle oxidative capacity and muscle mass loss in red and white hindlimb muscles during cancer cachexia development in the Apc(Min/+) mouse. Gastrocnemius and soleus muscles were excised from Apc(Min/+) mice at 20 wk of age. The gastrocnemius muscle was partitioned into red and white portions. Body mass (-20%), gastrocnemius muscle mass (-41%), soleus muscle mass (-34%), and epididymal fat pad (-100%) were significantly reduced in severely cachectic mice (n = 8) compared with mildly cachectic mice (n = 6). Circulating IL-6 was fivefold higher in severely cachectic mice. Cachexia significantly reduced the mitochondrial DNA-to-nuclear DNA ratio in both red and white portions of the gastrocnemius. Cytochrome c and cytochrome-c oxidase complex subunit IV (Cox IV) protein were reduced in all three muscles with severe cachexia. Changes in muscle oxidative capacity were not associated with altered myosin heavy chain expression. PGC-1α expression was suppressed by cachexia in the red and white gastrocnemius and soleus muscles. Cachexia reduced Mfn1 and Mfn2 mRNA expression and markers of oxidative stress, while Fis1 mRNA was increased by cachexia in all muscle types. Muscle oxidative capacity, mitochondria dynamics, and markers of oxidative stress are reduced in both oxidative and glycolytic muscle with severe wasting that is associated with increased circulating IL-6 levels.  相似文献   

14.
15.
The congestive heart failure (CHF) syndrome with soft tissue wasting, or cachexia, has its pathophysiologic origins rooted in neurohormonal activation. Mechanical cardiocirculatory assistance reveals the potential for reverse remodeling and recovery from CHF, which has been attributed to device-based hemodynamic unloading whereas the influence of hormonal withdrawal remains uncertain. This study addresses the signaling pathways induced by chronic aldosteronism in normal heart and skeletal muscle at organ, cellular/subcellular, and molecular levels, together with their potential for recovery (Recov) after its withdrawal. Eight-week-old male Sprague-Dawley rats were examined at 4 wk of aldosterone/salt treatment (ALDOST) and following 4-wk Recov. Compared with untreated, age-/sex-/strain-matched controls, ALDOST was accompanied by 1) a failure to gain weight, reduced muscle mass with atrophy, and a heterogeneity in cardiomyocyte size across the ventricles, including hypertrophy and atrophy at sites of microscopic scarring; 2) increased cardiomyocyte and mitochondrial free Ca(2+), coupled to oxidative stress with increased H(2)O(2) production and 8-isoprostane content, and increased opening potential of the mitochondrial permeability transition pore; 3) differentially expressed genes reflecting proinflammatory myocardial and catabolic muscle phenotypes; and 4) reversal to or toward recovery of these responses with 4-wk Recov. Aldosteronism in rats is accompanied by cachexia and leads to an adverse remodeling of the heart and skeletal muscle at organ, cellular/subcellular, and molecular levels. However, evidence presented herein implicates that these tissues retain their inherent potential for recovery after complete hormone withdrawal.  相似文献   

16.
Muscle wasting that occurs with cancer cachexia is caused by an imbalance in the rates of muscle protein synthesis and degradation. The Apc(Min/+) mouse is a model of colorectal cancer that develops cachexia that is dependent on circulating IL-6. However, the IL-6 regulation of muscle protein turnover during the initiation and progression of cachexia in the Apc(Min/+) mouse is not known. Cachexia progression was studied in Apc(Min/+) mice that were either weight stable (WS) or had initial (≤5%), intermediate (6-19%), or extreme (≥20%) body weight loss. The initiation of cachexia reduced %MPS 19% and a further ~50% with additional weight loss. Muscle IGF-1 mRNA expression and mTOR targets were suppressed with the progression of body weight loss, while muscle AMPK phosphorylation (Thr 172), AMPK activity, and raptor phosphorylation (Ser 792) were not increased with the initiation of weight loss, but were induced as cachexia progressed. ATP dependent protein degradation increased during the initiation and progression of cachexia. However, ATP independent protein degradation was not increased until cachexia had progressed beyond the initial phase. IL-6 receptor antibody administration prevented body weight loss and suppressed muscle protein degradation, without any effect on muscle %MPS or IGF-1 associated signaling. In summary, the %MPS reduction during the initiation of cachexia is associated with IGF-1/mTOR signaling repression, while muscle AMPK activation and activation of ATP independent protein degradation occur later in the progression of cachexia. IL-6 receptor antibody treatment blocked cachexia progression through the suppression of muscle protein degradation, while not rescuing the suppression of muscle protein synthesis. Attenuation of IL-6 signaling was effective in blocking the progression of cachexia, but not sufficient to reverse the process.  相似文献   

17.
Chronic hyperglycemia induces impairment of muscle growth and development of diabetes mellitus (DM). Since skeletal muscle is the major site for disposal of ingested glucose, impaired glucose metabolism causes imbalance between protein synthesis and degradation which adversely affects physical mobility.In this study, we investigated the effect of tocotrienol-rich fraction (TRF) supplementation on skeletal muscle damage in diabetic mice. Diabetes was induced by a high-fat diet with streptozotocin (STZ) injection (100 mg/kg) in male C57BL/6J mice. After diabetes was induced (fasting blood glucose levels≥250 mg/dl), normal control (CON) and diabetic control (DMC) groups were administrated with olive oil, while TRF treatment groups were administrated with TRF (dissolved in olive oil) at low dose (100 mg/kg BW, LT) or high dose (300 mg/kg BW, HT) by oral gavage for 12 weeks.TRF supplementation ameliorated muscle atrophy, plasma insulin concentration and homeostatic model assessment estimated insulin resistance in diabetic mice. Moreover, TRF treatment up-regulated IRS-1 and Akt levels accompanied by increased translocation of GLUT4. Furthermore, TRF increased mitochondrial biogenesis by activating SIRT1, SIRT3 and AMPK in diabetic skeletal muscle. These changes were in part mechanistically explained by reduced levels of skeletal muscle proteins related to oxidative stress (4-hydroxynonenal, protein carbonyls, Nrf2 and HO-1), inflammation (NFkB, MCP-1, IL-6 and TNF-α), and apoptosis (Bax, Bcl₂ and caspase-3) in diabetic mice. Taken together, these results suggest that TRF might be useful as a beneficial nutraceutical to prevent skeletal muscle atrophy associated with diabetes by regulating insulin signaling via AMPK/SIRT1/PGC1α pathways in type 2 diabetic mice.  相似文献   

18.
Proper mitochondrial function plays a central role in cellular metabolism. Various diseases as well as aging are associated with diminished mitochondrial function. Previously, we identified 19 miRNAs putatively involved in the regulation of mitochondrial metabolism in skeletal muscle, a highly metabolically active tissue. In the current study, these 19 miRNAs were individually silenced in C2C12 myotubes using antisense oligonucleotides, followed by measurement of the expression of 27 genes known to play a major role in regulating mitochondrial metabolism. Based on the outcomes, we then focused on miR-382-5p and identified pathways affected by its silencing using microarrays, investigated protein expression, and studied cellular respiration. Silencing of miRNA-382-5p significantly increased the expression of several genes involved in mitochondrial dynamics and biogenesis. Conventional microarray analysis in C2C12 myotubes silenced for miRNA-382-5p revealed a collective downregulation of mitochondrial ribosomal proteins and respiratory chain proteins. This effect was accompanied by an imbalance between mitochondrial proteins encoded by the nuclear and mitochondrial DNA (1.35-fold, p < 0.01) and an induction of HSP60 protein (1.31-fold, p < 0.05), indicating activation of the mitochondrial unfolded protein response (mtUPR). Furthermore, silencing of miR-382-5p reduced basal oxygen consumption rate by 14% ( p < 0.05) without affecting mitochondrial content, pointing towards a more efficient mitochondrial function as a result of improved mitochondrial quality control. Taken together, silencing of miR-382-5p induces a mitonuclear protein imbalance and activates the mtUPR in skeletal muscle, a phenomenon that was previously associated with improved longevity.  相似文献   

19.
Interleukin-15 (IL-15) is a novel anabolic factor for skeletal muscle which inhibits muscle wasting associated with cancer (cachexia) in a rat model. To develop a cell culture system in which the mechanism of the anabolic action of IL-15 on skeletal muscle could be examined, the mouse C2 skeletal myogenic cell line was transduced with a retroviral expression vector for IL-15 and compared to sister cells transduced with a control vector. Overexpression of IL-15 induced fivefold higher levels of sarcomeric myosin heavy chain and alpha-actin accumulation in differentiated myotubes. Secreted factors from IL-15-overexpressing myogenic cells, but not from control cells, induced increased myofibrillar protein accumulation in cocultured control myotubes. IL-15 overexpression induced a hypertrophic myotube morphology similar to that described for cultured myotubes which overexpressed the well-characterized anabolic factor insulin-like growth factor-I (IGF-I). However, in contrast to IGF-I, the hypertrophic action of IL-15 on skeletal myogenic cells did not involve stimulation of skeletal myoblast proliferation or differentiation. IL-15 induced myotube hypertrophy at both low and high IGF-I concentrations. Furthermore, in contrast to IGF-I, which stimulated only protein synthesis under these culture conditions, IL-15 both stimulated protein synthesis and inhibited protein degradation in cultured skeletal myotubes. These findings indicate that IL-15 action on skeletal myogenic cells is distinct from that of IGF-I. Due to the ability of IGF-I to stimulate cell division and its association with several forms of cancer, controversy exists concerning the advisability of treating cachexia or age-associated muscle wasting with IGF-I. Administration of IL-15 or modulation of the IL-15 signaling pathway may represent an alternative strategy for maintaining skeletal muscle mass under these conditions.  相似文献   

20.
Antioxidant systems against reactive oxygen species (ROS) are important factors in regulating homeostasis in various cells, tissues, and organs. Although ROS are known to cause to muscular disorders, the effects of mitochondrial ROS in muscle physiology have not been fully understood. Here, we investigated the effects of ROS on muscle mass and function using mice deficient in peroxiredoxin 3 (Prx3), which is a mitochondrial antioxidant protein. Ablation of Prx3 deregulated the mitochondrial network and membrane potential of myotubes, in which ROS levels were increased. We showed that the DNA content of mitochondria and ATP production were also reduced in Prx3-KO muscle. Of note, the mitofusin 1 and 2 protein levels decreased in Prx3-KO muscle, a biochemical evidence of impaired mitochondrial fusion. Contractile dysfunction was examined by measuring isometric forces of isolated extensor digitorum longus (EDL) and soleus muscles. Maximum absolute forces in both the EDL and the soleus muscles were not significantly affected in Prx3-KO mice. However, fatigue trials revealed that the decrease in relative force was greater and more rapid in soleus from Prx3-KO compared to wild-type mice. Taken together, these results suggest that Prx3 plays a crucial role in mitochondrial homeostasis and thereby controls the contractile functions of skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号