首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tubulin/FtsZ-like GTPase TubZ is responsible for maintaining the stability of pXO1-like plasmids in virulent Bacilli. TubZ forms a filament in a GTP-dependent manner, and like other partitioning systems of low-copy-number plasmids, it requires the centromere-binding protein TubR that connects the plasmid to the TubZ filament. Systems regulating TubZ partitioning have been identified in Clostridium prophages as well as virulent Bacillus species, in which TubZ facilitates partitioning by binding and towing the segrosome: the nucleoprotein complex composed of TubR and the centromere. However, the molecular mechanisms of segrosome assembly and the transient on–off interactions between the segrosome and the TubZ filament remain poorly understood. Here, we determined the crystal structure of TubR from Bacillus cereus at 2.0-Å resolution and investigated the DNA-binding ability of TubR using hydroxyl radical footprinting and electrophoretic mobility shift assays. The TubR dimer possesses 2-fold symmetry and binds to a 15-bp palindromic consensus sequence in the tubRZ promoter region. Continuous TubR-binding sites overlap each other, which enables efficient binding of TubR in a cooperative manner. Interestingly, the segrosome adopts an extended DNA–protein filament structure and likely gains conformational flexibility by introducing non-consensus residues into the palindromes in an asymmetric manner. Together, our experimental results and structural model indicate that the unique centromere recognition mechanism of TubR allows transient complex formation between the segrosome and the dynamic polymer of TubZ.  相似文献   

2.
The segregation of prokaryotic plasmids typically requires a centromere-like site and two proteins, a centromere-binding protein (CBP) and an NTPase. By contrast, a single 245 residue Par protein mediates partition of the prototypical staphylococcal multiresistance plasmid pSK1 in the absence of an identifiable NTPase component. To gain insight into centromere binding by pSK1 Par and its segregation function we performed structural, biochemical and in vivo studies. Here we show that pSK1 Par binds a centromere consisting of seven repeat elements. We demonstrate this Par-centromere interaction also mediates Par autoregulation. To elucidate the Par centromere binding mechanism, we obtained a structure of the Par N-terminal DNA-binding domain bound to centromere DNA to 2.25 Å. The pSK1 Par structure, which harbors a winged-helix-turn-helix (wHTH), is distinct from other plasmid CBP structures but shows homology to the B. subtilis chromosome segregation protein, RacA. Biochemical studies suggest the region C-terminal to the Par wHTH forms coiled coils and mediates oligomerization. Fluorescence microscopy analyses show that pSK1 Par enhances the separation of plasmids from clusters, driving effective segregation upon cell division. Combined the data provide insight into the molecular properties of a single protein partition system.  相似文献   

3.
Stable maintenance of low-copy-number plasmids requires partition (par) systems that consist of a nucleotide hydrolase, a DNA-binding protein, and a cis-acting DNA-binding site. The FtsZ/tubulin-like GTPase TubZ was identified as a partitioning factor of the virulence plasmids pBtoxis and pXO1 in Bacillus thuringiensis and Bacillus anthracis, respectively. TubZ exhibits high GTPase activity and assembles into polymers both in vivo and in vitro, and its “treadmilling” movement is required for plasmid stability in the cell. To investigate the molecular mechanism of pXO1 plasmid segregation by TubZ filaments, we determined the crystal structures of Bacillus cereus TubZ in apo-, GDP-, and guanosine 5′-3-O-(thio)triphosphate (GTPγS)-bound forms at resolutions of 2.1, 1.9, and 3.3 Å, respectively. Interestingly, the slowly hydrolyzable GTP analog GTPγS was hydrolyzed to GDP in the crystal. In the post-GTP hydrolysis state, GDP-bound B. cereus TubZ forms a dimer by the head-to-tail association of individual subunits in the asymmetric unit, which is similar to the protofilament formation of FtsZ and B. thuringiensis TubZ. However, the M loop interacts with the nucleotide-binding site of the adjacent subunit and stabilizes the filament structure in a different manner, which indicates that the molecular assembly of the TubZ-related par systems is not stringently conserved. Furthermore, we show that the C-terminal tail of TubZ is required for association with the DNA-binding protein TubR. Using a combination of crystallography, site-directed mutagenesis, and biochemical analysis, our results provide the structural basis of the TubZ polymer that may drive DNA segregation.  相似文献   

4.
5.
The DNA sequences of two related plasmids pPR1 and pPR3 described previously in Streptococcus pneumoniae isolates from Germany and Spain were now determined. Both plasmids belong to a family of rolling circle (RC) plasmids found in a variety of bacteria. Their GC content with 32% is lower than that of the S. pneumoniae chromosomal DNA. The plasmid pPR3 has a molecular size of 3160 bp with four putative open reading frames, whereas pPR1 contained a deletion of 313 bp that included the 5′-part of ORF2 and upstream regions and differed by three bp from pPR3. The predicted protein of ORF1 showed high similarity to replication proteins of RC plasmids with 74% identical amino acids to RepA of Streptococcus thermophilus plasmids. Sequences similar to the plus origin of replication of ssDNA plasmids were present in both plasmids. They also contained a 152-bp region with over 83% identity to the minus origin of replication of the Streptococcus agalacticae plasmid pMV158.  相似文献   

6.
Bacillus moritai and six strains of Bacillus sphaericus pathogenic to dipteran larvae were examined for the presence of covalently closed circular (CCC) DNA. The plasmid profiles of the bacteria were analyzed using a cleared lysate electrophoresis technique. Four of the six strains of B. sphaericus examined contained CCC DNA. Strain SSII-1 contained two plasmids (pKA1, pKA2) having molecular weights of about 8.4 and 2.0 megadaltons (MDa). Strains 1404 and 1881 each contained one plasmid, pKA3 and pKA4, respectively. pKA3 had a molecular weight of about 8.2 MDa. pKA4 had a relatively large plasmid with a molecular weight of about 33.5 MDa. Strain K contained five size classes of CCC DNA. The plasmids pKA5, pKA6, pKA7, pKA8, and pKA9 had molecular weights of about 11.4, 10.9, 7.4, 7.0, and 6.4 MDa, respectively. Strains 1593-4 and 1691 were plasmidless and could not be distinguished from each other based on their plasmid profiles. B. moritai ATCC 21042 contained two size classes of CCC duplex DNA; pRF100 had a molecular weight of about 4.6 MDa and pRF101 had a molecular weight of about 2.1 MDa. No phenotype association with any of the isolated plasmids has been determined.  相似文献   

7.
Summary Multicopy plasmids carrying the sopB gene of the F plasmid inhibit stable inheritance of a coexisting mini-F plasmid. This incompatibility, termed IncG, is found to be caused by excess amounts of the SopB protein, which is essential for accuratepartitioning of plasmid DNA molecules into daughter cells. A sopB-carrying multicopy plasmid that shows the IncG+ phenotype was mutagenized in vitro and IncG negative mutant plasmids were isolated. Among these amber and missense mutants of sopB, mutants with a low plasmid copy number and a mutant in the Shine-Dalgarno sequence for translation of the SopB protein were obtained. These results demonstrate that the IncG phenotype is caused by the SopB protein, and that the incompatibility is expressed only when the protein is overproduced. This suggests that the protein must be kept at appropriate concentrations to ensure stable maintenance of the plasmid.  相似文献   

8.
The streptococcal promiscuous plasmid pMV158 can be mobilized between a number of bacterial species by means of three elements: (i) the plasmid-encoded nicking-closing protein MobM, involved in the initiation and termination of the conjugative transfer; (ii) the DNA sequence where the MobM-mediated nick takes place (the oriT(pMV158)); and (iii) the function(s) provided by auxiliary plasmids. MobM belongs to the Pre/Mob family of plasmid-encoded DNA-relaxing proteins (relaxases). Purified MobM protein has been used to assay cleavage conditions on plasmid supercoiled DNA. Some structural features of MobM have been addressed by analytical ultracentrifugation, circular dichroism, thermal denaturation, and fluorescence emission. The protein behaved as a dimer of identical subunits with an ellipsoidal shape. MobM showed a high (about 60%) alpha-helical content and a midpoint denaturation of about 40 degrees C. Cell fractionation assays showed that MobM was associated to the cell membrane. This association was abolished when a great alteration was introduced within a putative coiled-coil located at the C-terminal region of the protein. Emission fluorescence suggested that the three Trp residues of MobM are located within a hydrophobic environment. A molecular model of MobM on the known structure of colicin Ia has been built.  相似文献   

9.
10.
In the baculovirus shuttle vector(bacmid) system, a helper plasmid and a donor plasmid are employed to insert heterologous genes into a cloned baculovirus genome via Tn7 transposition in Escherichia coli. The helper and donor plasmids are usually cotransfected with constructed bacmids into insect cells, which will lead to integration of these plasmids into the viral genome,and hence to the production of defective virions. In this study, to facilitate the preparation of plasmid-free recombinant bacmids, we modified a set of helper and donor plasmids by replacing their replication origins with that of a temperature-sensitive(ts) plasmid, p SIM6. Using the resulting ts helper plasmid p MON7124 ts and the ts donor plasmid p FB1ts-PH-GFP, a recombinant bacmid,b Ac WT-PG(-), was constructed, and the transposition efficiency was found to be 33.1%. The plasmids were then removed by culturing at 37 °C. For b Ac WT-PG(-), the infectious progeny virus titer and the protein expression level under the control of the polyhedrin promoter were similar to those of a bacmid constructed with unmodified helper and donor plasmids. These ts plasmids will be useful for obtaining plasmid-free bacmids for both heterologous protein production and fundamental studies of baculovirus biology.  相似文献   

11.
ParB proteins are one of the three essential components of partition systems that actively segregate bacterial chromosomes and plasmids. In binding to centromere sequences, ParB assembles as nucleoprotein structures called partition complexes. These assemblies are the substrates for the partitioning process that ensures DNA molecules are segregated to both sides of the cell. We recently identified the sopC centromere nucleotides required for binding to the ParB homologue of plasmid F, SopB. This analysis also suggested a role in sopC binding for an arginine residue, R219, located outside the helix-turn-helix (HTH) DNA-binding motif previously shown to be the only determinant for sopC-specific binding. Here, we demonstrated that the R219 residue is critical for SopB binding to sopC during partition. Mutating R219 to alanine or lysine abolished partition by preventing partition complex assembly. Thus, specificity of SopB binding relies on two distinct motifs, an HTH and an arginine residue, which define a split DNA-binding domain larger than previously thought. Bioinformatic analysis over a broad range of chromosomal ParBs generalized our findings with the identification of a non-HTH positively charged residue essential for partition and centromere binding, present in a newly identified highly conserved motif. We propose that ParB proteins possess two DNA-binding motifs that form an extended centromere-binding domain, providing high specificity.  相似文献   

12.
We identified and analyzed a DNA region that is required for the stable maintenance of plasmids in the genus Sphingomonas. This DNA fragment, a 244?bp, is localized in the upstream region of the repA gene of low-copy-number small plasmid pYAN-1 (4896?bp) of Sphingobium yanoikuyae. It has four inverted repeats and one direct repeat for possible secondary structures. We were able to stabilize not only another unstable plasmid, pYAN-2, in the genus Sphingomonas, but also the unstable plasmid pSC101 without par locus in Escherichia coli. The copy-number levels between the unstable plasmid and the parental plasmid were similar, and these results suggest that the stabilization of unstable plasmids by this DNA region of pYAN-1 was not due to an increase in plasmid copy number. We concluded that the stabilization of the plasmid was due to a plasmid partition mechanism encoded by a DNA fragment of pYAN-1.  相似文献   

13.
Three plasmids isolated from the crenarchaeal thermoacidophile Sulfolobus neozealandicus were characterized. Plasmids pTAU4 (7,192 bp), pORA1 (9,689 bp) and pTIK4 (13,638 bp) show unusual properties that distinguish them from previously characterized cryptic plasmids of the genus Sulfolobus. Plasmids pORA1 and pTIK4 encode RepA proteins, only the former of which carries the novel polymerase-primase domain of other known Sulfolobus plasmids. Plasmid pTAU4 encodes a mini-chromosome maintenance protein homolog and no RepA protein; the implications for DNA replication are considered. Plasmid pORA1 is the first Sulfolobus plasmid to be characterized that does not encode the otherwise highly conserved DNA-binding PlrA protein. Another encoded protein appears to be specific for the New Zealand plasmids. The three plasmids should provide useful model systems for functional studies of these important crenarchaeal proteins.  相似文献   

14.
The nucleotide sequence of a bacteriocin-encoding plasmid isolated from Klebsiella pneumoniae (pKlebB-K17/80) has been determined. The encoded klebicin B protein is similar in sequence to the DNase pyocins and colicins, suggesting that klebicin B functions as a nonspecific endonuclease. The klebicin gene cluster, as well as the plasmid backbone, is a chimera, with regions similar to those of pore-former colicins, nuclease pyocins and colicins as well as noncolicinogenic plasmids. Similarities between pKlebB plasmid maintenance functions and those of the colicin E1 plasmid suggest that pKlebB is a member of the ColE1 plasmid replication family.  相似文献   

15.
Few biological systems permit rigorous testing of how changes in DNA sequence give rise to adaptive phenotypes. In this study, we sought a simplified experimental system with a detailed understanding of the genotype-to-phenotype relationship that could be altered by environmental perturbations. We focused on plasmid fitness, i.e., the ability of plasmids to be stably maintained in a bacterial population, which is dictated by the plasmid''s replication and segregation machinery. Although plasmid replication depends on host proteins, the type II plasmid partitioning (Par) machinery is entirely plasmid encoded and relies solely on three components: parC, a centromere-like DNA sequence, ParR, a DNA-binding protein that interacts with parC, and ParM, which forms actin-like filaments that push two plasmids away from each other at cell division. Interactions between the Par operons of two related plasmids can cause incompatibility and the reduced transmission of one or both plasmids. We have identified segregation-dependent plasmid incompatibility between the highly divergent Par operons of plasmids pB171 and pCP301. Genetic and biochemical studies revealed that the incompatibility is due to the functional promiscuity of the DNA-binding protein ParRpB171, which interacts with both parC DNA sequences to direct plasmid segregation, indicating that the lack of DNA binding specificity is detrimental to plasmid fitness in this environment. This study therefore successfully utilized plasmid segregation to dissect the molecular interactions between genotype, phenotype, and fitness.  相似文献   

16.
Amino acid sequence analysis of the product encoded by repN of Thermoanaerobacterium saccharolyticum (Clostridium thermosaccharolyticum) pNB2, which is capable of rolling-circle (RC) replication, revealed all known motifs conserved among replication (Rep) proteins that initiate RC replication of plasmids related to pC194/pUB110. Using the T7 expression system in Escherichia coli, RepN was identified as a 35K protein. Its lethal effect on bacterial cells was unusually high for a protein of the kind. Mutation analysis of the potential active centers (Y85F and Y211F) showed that the lethal effect of RepN is not associated with its putative topoisomerase (relaxase) activity. On evidence of deletion mapping, the lethal effect was attributed to the N- and C-terminal domains, each accounting for about 30% of the total protein. The RepN fragments essential for the lethal effect were found to share a motif without appreciable homology to known conserved motifs. The high lethal effect of RepN was assumed to result from duplication of the motif and to play an adaptive role, providing for stable maintenance of the AT-rich plasmid in thermophilic bacterial cells.  相似文献   

17.
Autosomal dominant polycystic kidney disease (ADPKD) affects over 1:1000 of the worldwide population and is caused by mutations in two genes, PKD1 and PKD2. PKD2 encodes a 968-amino acid membrane spanning protein, Polycystin-2 (PC-2), which is a member of the TRP ion channel family. The C-terminal cytoplasmic tail contains an EF-hand motif followed by a short coiled-coil domain. We have determined the structure of the EF-hand region of PC-2 using NMR spectroscopy. The use of different boundaries, compared with those used in previous studies, have enabled us to determine a high resolution structure and show that the EF hand motif forms a standard calcium-binding pocket. The affinity of this pocket for calcium has been measured and mutants that both decrease and increase its affinity for the metal ion have been created.  相似文献   

18.
Margolin W 《Current biology : CB》2007,17(16):R633-R636
Large plasmids of some Bacillus species encode a distinct tubulin homolog, TubZ, implicated in maintenance of the host plasmid. A recent study has shown that TubZ polymers exhibit treadmilling behavior in vivo, suggesting that they are involved in mitotic activity.  相似文献   

19.
Pantoea agglomerans has been transformed from a commensal bacterium into two related gall-forming pathovars by acquisition of pPATH plasmids containing a pathogenicity island (PAI). This PAI harbors an hrp/hrc gene cluster, type III effectors, and phytohormone biosynthetic genes. DNA typing by pulsed-field gel electrophoresis revealed two major groups of P. agglomerans pv. gypsophilae and one group of P. agglomerans pv. betae. The pPATH plasmids of the different groups had nearly identical replicons (98% identity), and the RepA protein showed the highest level of similarity with IncN plasmid proteins. A series of plasmids, designated pRAs, in which the whole replicon region (2,170 bp) or deleted derivatives of it were ligated with nptI were generated for replicon analysis. A basic 929-bp replicon (pRA6) was sufficient for replication in Escherichia coli and in nonpathogenic P. agglomerans. However, the whole replicon region (pRA1) was necessary for expulsion of the pPATH plasmid, which resulted in the loss of pathogenicity. The presence of direct repeats in the replicon region suggests that the pPATH plasmid is an iteron plasmid and that the repeats may regulate its replication. The pPATH plasmids are nonconjugative but exhibit a broad host range, as shown by replication of pRA1 in Erwinia, Pseudomonas, and Xanthomonas. Restriction fragment length polymorphism analyses indicated that the PAIs in the two groups of P. agglomerans pv. gypsophilae are similar but different from those in P. agglomerans pv. betae. The results could indicate that the pPATH plasmids evolved from a common ancestral mobilizable plasmid that was transferred into different strains of P. agglomerans.  相似文献   

20.
Chlamydia trachomatis infection is the most common sexually transmitted bacterial disease. Left untreated, it can lead to ectopic pregnancy, pelvic inflammatory disease, and infertility. Here we present the structure of the secreted C. trachomatis protein Pgp3, an immunodominant antigen and putative virulence factor. The ∼84-kDa Pgp3 homotrimer, encoded on a cryptic plasmid, consists of globular N- and C-terminal assemblies connected by a triple-helical coiled-coil. The C-terminal domains possess folds similar to members of the TNF family of cytokines. The closest Pgp3 C-terminal domain structural homologs include a lectin from Burkholderia cenocepacia, the C1q component of complement, and a portion of the Bacillus anthracis spore surface protein BclA, all of which play roles in bioadhesion. The N-terminal domain consists of a concatenation of structural motifs typically found in trimeric viral proteins. The central parallel triple-helical coiled-coil contains an unusual alternating pattern of apolar and polar residue pairs that generate a rare right-handed superhelical twist. The unique architecture of Pgp3 provides the basis for understanding its role in chlamydial pathogenesis and serves as the platform for its optimization as a potential vaccine antigen candidate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号