首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calreticulin (CALR) is a Ca2+ binding multifunctional protein that mostly resides in the endoplasmic reticulum (ER) and plays a number of important roles in various physiological and pathological processes. Although the major functions ascribed to CALR are controlling the Ca2+ homeostasis in ER and acting as a lectin-like ER chaperon for many glycoproteins, this moonlighting protein can be found in various cellular compartments where it has many non-ER functions. To shed more light on the mechanisms underlying polyfunctionality of this moonlighting protein that can be found in different cellular compartments and that possesses a wide spectrum of unrelated biological activities, being able to interact with Ca2+ (and potentially other metal ions), RNA, oligosaccharides, and numerous proteins, we used a set of experimental and computational tools to evaluate the intrinsic disorder status of CALR and the role of calcium binding on structural properties and conformational stability of the full-length CALR and its isolated P- and C-domains.  相似文献   

2.
Bcl-2 family proteins, known for their apoptosis functioning at the mitochondria, have been shown to localize to other cellular compartments to mediate calcium (Ca2+) signals. Since the proper supply of Ca2+ in cells serves as an important mechanism for cellular survival and bioenergetics, we propose an integrating role for Bcl-2 family proteins in modulating Ca2+ signaling. The endoplasmic reticulum (ER) is the main Ca2+ storage for the cell and Bcl-2 family proteins competitively regulate its Ca2+ concentration. Bcl-2 family proteins also regulate the flux of Ca2+ from the ER by physically interacting with inositol 1,4,5-trisphosphate receptors (IP3Rs) to mediate their opening. Type 1 IP3Rs reside at the bulk ER to coordinate cytosolic Ca2+ signals, while type 3 IP3Rs reside at mitochondria-associated ER membrane (MAM) to facilitate mitochondrial Ca2+ uptake. In healthy cells, mitochondrial Ca2+ drives pyruvate into the citric acid (TCA) cycle to facilitate ATP production, while a continuous accumulation of Ca2+ can trigger the release of cytochrome c, thus initiating apoptosis. Since multiple organelles and Bcl-2 family proteins are involved in Ca2+ signaling, we aim to clarify the role that Bcl-2 family proteins play in facilitating Ca2+ signaling and how mitochondrial Ca2+ is relevant in both bioenergetics and apoptosis. We also explore how these insights could be useful in controlling bioenergetics in apoptosis-resistant cell lines.  相似文献   

3.
The endoplasmic reticulum (ER) is central for many essential cellular activities, such as folding, assembly and quality control of secretory and membrane proteins, disulfide bond formation, glycosylation, lipid biosynthesis, Ca2+ storage and signaling. In addition, this multifunctional organelle integrates many adaptive and/or maladaptive signaling cues reporting on metabolism, proteostasis, Ca2+ and redox homeostasis. We are beginning to understand how these functions and pathways are integrated with one another to regulate homeostasis at cell, tissue and organism levels. The mechanisms underlying the introduction of the proper set of disulfide bonds into secretory proteins (oxidative folding) are strictly related to redox homeostasis, ER stress sensing and signaling and provide a good example of the integration systems operative in the early secretory compartment.  相似文献   

4.

Background  

Mammalian STIM1 and STIM2 and the single Drosophila homologue dSTIM have been identified as key regulators of store-operated Ca2+ entry in cells. STIM proteins function both as molecular sensors of Ca2+concentration in the endoplasmic reticulum (ER) and the molecular triggers that activate SOC channels in the plasma membrane. Ca2+ is a crucial intracellular messenger utilised in many cellular processes, and regulators of Ca2+ homeostasis in the ER and cytosol are likely to play important roles in developmental processes. STIM protein expression is altered in several tumour types but the role of these proteins in developmental signalling pathways has not been thoroughly examined.  相似文献   

5.
Mitochondria-associated membranes (MAM), physical platforms that enable communication between mitochondria and the endoplasmic reticulum (ER), are enriched with many proteins and enzymes involved in several crucial cellular processes, such as calcium (Ca2+) homeostasis, lipid synthesis and trafficking, autophagy and reactive oxygen species (ROS) production. Accumulating studies indicate that tumor suppressors and oncogenes are present at these intimate contacts between mitochondria and the ER, where they influence Ca2+ flux between mitochondria and the ER or affect lipid homeostasis at MAM, consequently impacting cell metabolism and cell fate. Understanding these fundamental roles of mitochondria-ER contact sites as important domains for tumor suppressors and oncogenes can support the search for new and more precise anticancer therapies. In the present review, we summarize the current understanding of basic MAM biology, composition and function and discuss the possible role of MAM-resident oncogenes and tumor suppressors.  相似文献   

6.
Ca2+ is a signalling molecule involved in virtually every aspect of cell function. The endoplasmic reticulum (ER) is an important and dynamic organelle responsible for storage of the majority of intracellular Ca2+. Within the ER lumen are proteins that function as Ca2+ buffers and/or molecular chaperones including calreticulin, a multifunctional Ca2+-binding protein. Calreticulin-deficiency is lethal in utero due to impaired cardiac development. In the absence of calreticulin Ca2+ storage capacity in the ER and InsP3 receptor mediated Ca2+ release from ER are compromised. Remarkably, over-expression of constitutively active calcineurin in the hearts of calreticulin deficient mice rescues them from embryonic lethality and produces live calreticulin deficient animals. These observations provide first evidence that calreticulin is a key upstream regulator of calcineurin in the Ca2+-signalling cascade and they highlight the importance of ER during early stages of cellular commitment and tissue development during organogenesis.  相似文献   

7.
8.
Ca2+ is an important signalling molecule that regulates multiple cellular processes, including apoptosis. Although Ca2+ influx through transient receptor potential (TRP) channels in the plasma membrane is known to trigger cell death, the function of intracellular TRP proteins in the regulation of Ca2+‐dependent signalling pathways and apoptosis has remained elusive. Here, we show that TRPP2, the ion channel mutated in autosomal dominant polycystic kidney disease (ADPKD), protects cells from apoptosis by lowering the Ca2+ concentration in the endoplasmic reticulum (ER). ER‐resident TRPP2 counteracts the activity of the sarcoendoplasmic Ca2+ ATPase by increasing the ER Ca2+ permeability. This results in diminished cytosolic and mitochondrial Ca2+ signals upon stimulation of inositol 1,4,5‐trisphosphate receptors and reduces Ca2+ release from the ER in response to apoptotic stimuli. Conversely, knockdown of TRPP2 in renal epithelial cells increases ER Ca2+ release and augments sensitivity to apoptosis. Our findings indicate an important function of ER‐resident TRPP2 in the modulation of intracellular Ca2+ signalling, and provide a molecular mechanism for the increased apoptosis rates in ADPKD upon loss of TRPP2 channel function.  相似文献   

9.
10.
The 5' AMP-activated protein kinase (AMPK) is a nutrient-sensitive kinase that plays a key role in the control of cellular energy metabolism. We have explored here the relationship between AMPK and Ca2+ signaling by looking at the effect of an AMPK activator (A769662) and an AMPK inhibitor (dorsomorphin) on histamine-induced Ca2+-release from the endoplasmic reticulum (ER) in HeLa cells. Our data show that incubation with A769662 (EC50 = 29 μM) inhibited histamine-induced Ca2+-release from the ER in intact cells, as well as inositol-1,4,5-trisphosphate (IP3)-induced Ca2+ release in permeabilized cells. On the contrary, dorsomorphin (EC50 = 0.4 μM) activated both histamine and IP3-induced Ca2+-release and reversed the effect of A769662. These results suggest a direct effect of AMPK regulation on IP3 receptor (IP3R) function. A phosphoproteomic study did not reveal changes in IP3R phosphorylation, but showed significant changes in phosphorylation of proteins placed upstream in the IP3R interactome and in several proteins related with Ca2+ metabolism, which could be candidates to mediate the effects observed. In conclusion, our data suggest that AMPK negatively regulates IP3R. This effect constitutes a novel and very important link between Ca2+ signaling and the AMPK pathway.  相似文献   

11.
The concentration of Ca2+ in the endoplasmic reticulum (ER) is critically important for maintaining its oxidizing environment as well as for maintaining luminal ATP levels required for chaperone activity. Therefore, local luminal Ca2+ concentrations and the dynamic Ca2+ flux between the different subcellular compartments are tightly controlled. Influx of Ca2+ into the ER is enabled by a reductive shift, which opens the sarcoendoplasmic reticulum calcium transport ATPase pump, building the Ca2+ gradient across the ER membrane required for ATP import. Meanwhile, Ca2+ leakage from the ER has been reported to occur via the Sec61 translocon following protein translocation. In this review, we provide an overview of the complex regulation of Ca2+ homeostasis, Ca2+ flux between subcellular compartments, and the cellular stress response (the unfolded protein response) induced upon dysregulated luminal Ca2+ metabolism. We also provide insight into the structure and gating mechanism at the Sec61 translocon and examine the role of ER-resident cochaperones in assisting the central ER-resident chaperone BiP in the control of luminal Ca2+ concentrations.  相似文献   

12.
Calcium (Ca2+) release from the endoplasmic reticulum plays an important role in many cell-fate defining cellular processes. Traditionally, this Ca2+ release was associated with the ER Ca2+ release channels, inositol 1,4,5?triphosphate receptor (IP3R) and ryanodine receptor (RyR). Lately, however, other calcium conductances have been found to be intracellularly localized and to participate in cell fate regulation. Nonetheless, molecular identity and functional properties of the ER Ca2+ release mechanisms associated with multiple diseases, e.g. prostate cancer, remain unknown. Here we identify a new family of transient receptor potential melastatine 8 (TRPM8) channel isoforms as functional ER Ca2+ release channels expressed in mitochondria-associated ER membranes (MAMs). These TRPM8 isoforms exhibit an unconventional structure with 4 transmembrane domains (TMs) instead of 6 TMs characteristic of the TRP channel archetype. We show that these 4TM-TRPM8 isoforms form functional channels in the ER and participate in regulation of the steady-state Ca2+ concentration ([Ca2+]) in mitochondria and the ER. Thus, our study identifies 4TM-TRPM8 isoforms as ER Ca2+ release mechanism distinct from classical Ca2+ release channels.  相似文献   

13.
The mitochondrial-associated membrane (MAM) is a physical platform that facilitates communication between the endoplasmic reticulum (ER) and mitochondria. It is enriched with many proteins and enzymes and plays an important role in the regulation of several fundamental physiological processes, such as calcium (Ca2+) transfer, lipid synthesis, cellular autophagy and ER stress. Accumulating evidence suggests that oncogenes and suppressor genes are present at the ER-mitochondrial contact site, and their alterations can affect Ca2+ flux, lipid homeostasis, and the dysregulation of mitochondrial dynamics, thereby influencing the fate of cancer cells. Understanding the fundamental role of MAM-resident proteins in tumorigenesis could support the search for novel therapeutic targets in cancer. In this review, we summarize the basic structure of MAM and the core functions of MAM-resident proteins in tumorigenesis. In addition, we discuss the mechanisms by which natural compounds promote cancer cell apoptosis from the perspective of ER stress.  相似文献   

14.
The receptor-evoked Ca2+ signal in secretory epithelia mediate many cellular functions essential for cell survival and their most fundamental functions of secretory granules exocytosis and fluid and electrolyte secretion. Ca2+ influx is a key component of the receptor-evoked Ca2+ signal in secretory cell and is mediated by both TRPC and the STIM1-activated Orai1 channels that mediates the Ca2+ release-activated current (CRAC) Icrac. The core components of the receptor-evoked Ca2+ signal are assembled at the ER/PM junctions where exchange of materials between the plasma membrane and internal organelles take place, including transfer of lipids and Ca2+. The Ca2+ signal generated at the confined space of the ER/PM junctions is necessary for activation of the Ca2+-regulated proteins and ion channels that mediate exocytosis with high fidelity and tight control. In this review we discuss the general properties of Ca2+ signaling, PI(4,5)P2 and other lipids at the ER/PM junctions with regard to secretory cells function and disease caused by uncontrolled Ca2+ influx.  相似文献   

15.
Alzheimer disease (AD), the leading cause of dementia, is characterized by the accumulation of β-amyloid peptides (Aβ) in senile plaques in the brains of affected patients. Many cellular mechanisms are thought to play important roles in the development and progression of AD. Several lines of evidence point to the dysregulation of Ca2+ homeostasis as underlying aspects of AD pathogenesis. Moreover, direct roles in the regulation of Ca2+ homeostasis have been demonstrated for proteins encoded by familial AD-linked genes such as PSEN1, PSEN2, and APP, as well as Aβ peptides. Whereas these studies support the hypothesis that disruption of Ca2+ homeostasis contributes to AD, it is difficult to disentangle the effects of familial AD-linked genes on Aβ production from their effects on Ca2+ homeostasis. Here, we developed a system in which cellular Ca2+ homeostasis could be directly manipulated to study the effects on amyloid precursor protein metabolism and Aβ production. We overexpressed stromal interaction molecule 1 (STIM1) and Orai1, the components of the store-operated Ca2+ entry pathway, to generate cells with constitutive and store depletion-induced Ca2+ entry. We found striking effects of Ca2+ entry induced by overexpression of the constitutively active STIM1D76A mutant on amyloid precursor protein metabolism. Specifically, constitutive activation of Ca2+ entry by expression of STIM1D76A significantly reduced Aβ secretion. Our results suggest that disruptions in Ca2+ homeostasis may influence AD pathogenesis directly through the modulation of Aβ production.  相似文献   

16.
Cerebral ischemia is a key pathophysiological feature of various brain insults. Inadequate oxygen supply can manifest regionally in stroke or as a result of traumatic brain injury or globally following cardiac arrest, all leading to irreversible brain damage. Mitochondrial function is essential for neuronal survival, since neurons critically depend on ATP synthesis generated by mitochondrial oxidative phosphorylation. Mitochondrial activity depends on Ca2+ and is fueled either by Ca2+ from the extracellular space when triggered by neuronal activity or by Ca2+ released from the endoplasmic reticulum (ER) and taken up through specialized contact sites between the ER and mitochondria known as mitochondrial-associated ER membranes. The coordination of these Ca2+ pools is required to synchronize mitochondrial respiration rates and ATP synthesis to physiological demands. In this review, we discuss the role of the proteins involved in mitochondrial Ca2+ homeostasis in models of ischemia. The proteins include those important for the Ca2+-dependent motility of mitochondria and for Ca2+ transfer from the ER to mitochondria, the tethering proteins that bring the two organelles together, inositol 1,4,5-triphosphate receptors that enable Ca2+ release from the ER, voltage-dependent anion channels that allow Ca2+ entry through the highly permeable outer mitochondrial membrane and the mitochondrial Ca2+ uniporter together with its regulatory proteins that permit Ca2+ entry into the mitochondrial matrix. Finally, we address those proteins important for the extrusion of Ca2+ from the mitochondria such as the mitochondrial Na+/Ca2+ exchanger or, if the mitochondrial Ca2+ concentration exceeds a certain threshold, the mitochondrial permeability transition pore.  相似文献   

17.
Summary The endoplasmic reticulum (ER) in the photoreceptors of the honeybee drone, Apis mellifera, is highly differentiated and morphologically more complex than suggested by previous studies. In addition to the prominent voluminous submicrovillar cisternae we describe a submitochondrial ER. It separates the mitochondria-containing periphery from the core of the cell. The cell core contains many fenestrated ER cisternae that are horizontally and periodically arranged. We show that all parts of the ER, except for a tubulovesicular portion but including the nuclear envelope, are continuous; all parts appear to accumulate Ca2+ actively and with high affinity. Our results confirm previous suggestions that the submicrovillar ER is the major intracellular Ca2+ -store in the photoreceptors. The submitochondrial ER is thought to participate in Ca2+-regulation in the mitochondrial microenvironment. Moreover, we describe for the first time an extensive, morphologically complex Ca2+-sequestering ER in the pigmented glial cells; it might participate in the regulation of the glycogen metabolism.  相似文献   

18.
The endoplasmic reticulum is the main intracellular Ca2+ store for Ca2+ release during cell signaling. There are different strategies to avoid ER Ca2+ depletion. Release channels utilize first Ca2+-bound to proteins and this minimizes the reduction of the free luminal [Ca2+]. However, if release channels stay open after exhaustion of Ca2+-bound to proteins, then the reduction of the free luminal ER [Ca2+] (via STIM proteins) activates Ca2+ entry at the plasma membrane to restore the ER Ca2+ load, which will work provided that SERCA pump is active. Nevertheless, there are several noxious conditions that result in decreased activity of the SERCA pump such as oxidative stress, inflammatory cytokines, and saturated fatty acids, among others. These conditions result in a deficient restoration of the ER [Ca2+] and lead to the ER stress response that should facilitate recovery of the ER. However, if the stressful condition persists then ER stress ends up triggering cell death and the ensuing degenerative process leads to diverse pathologies; particularly insulin resistance, diabetes and several of the complications associated with diabetes. This scenario suggests that limiting ER stress should decrease the incidence of diabetes and the mobility and mortality associated with this illness.  相似文献   

19.
Verkhratsky  A.  Solovyova  N. 《Neurophysiology》2002,34(2-3):112-117
For many years, the endoplasmic reticulum (ER) was considered to be involved in rapid signalling events due to its ability to serve as a dynamic calcium store capable of accumulating large amounts of Ca2+ ions and of releasing them in response to physiological stimulation. Recent data significantly increased the importance of the ER as a signalling organelle, by demonstrating that the ER is associated with specific pathways regulating long-lasting adaptive processes and controlling cell survival. The ER lumen is enriched by enzymatic systems involved in protein synthesis and correcting post-translational folding of these proteins. The processes of post-translational protein processing are controlled by a class of specific enzymes known as chaperones, which in turn are regulated by the free Ca2+ concentration within the ER lumen ([Ca2+]L). At the same time, a high [Ca2+]L determines the ability of the ER to generate cytosolic Ca2+ signals. Thus, the ER is able to produce signals interacting within different temporal domains. Fast ER signals result from Ca2+ release via specific Ca2+-release channels and from rapid movements of Ca2+ ions within the ER lumen (calcium tunneling). Long-lasting signals involve Ca2+-dependent regulation of chaperones with subsequent changes in protein processing and synthesis. Any malfunctions in the ER Ca2+ homeostasis result in accumulation of unfolded proteins, which in turn activates several signalling systems aimed at appropriate compensatory responses or (in the case of severe ER dysregulation) in cellular pathology and death (ER stress responses). Thus, the Ca2+ ion emerges as a messenger molecule, which integrates various signals within the ER: fluctuations of the [Ca2+]L induced by signals originating at the level of the plasmalemma (i.e., Ca2+ entry or activation of the metabotropic receptors) regulate in turn protein synthesis and processing via generating secondary signalling events between the ER and the nucleus.  相似文献   

20.
A rise in cytoplasmic [Ca2+] due to store-operated Ca2+ entry (SOCE) triggers a plethora of responses, both acute and long term. This leads to the important question of how this initial signal is decoded to regulate specific cellular functions. It is now clearly established that local [Ca2+] at the site of SOCE can vary significantly from the global [Ca2+] in the cytosol. Such Ca2+ microdomains are generated by the assembly of key Ca2+ signaling proteins within the domains. For example, GPCR, IP3 receptors, TRPC3 channels, the plasma membrane Ca2+ pump and the endoplasmic reticulum (ER) Ca2+ pump have all been found to be assembled in a complex and all of them contribute to the Ca2+ signal. Recent studies have revealed that two other critical components of SOCE, STIM1 and Orai1, are also recruited to these regions. Thus, the entire machinery for activation and regulation of SOCE is compartmentalized in specific cellular domains which facilitates the specificity and rate of protein-protein interactions that are required for activation of the channels. In the case of TRPC1-SOC channels, it appears that specific lipid domains, lipid raft domains (LRDs), in the plasma membrane, as well as cholesterol-binding scaffolding proteins such as caveolin-1 (Cav-1), are involved in assembly of the TRPC channel complexes. Thus, plasma membrane proteins and lipid domains as well as ER proteins contribute to the SOCE-Ca2+ signaling microdomain and modulation of the Ca2+ signals per se. Of further interest is that modulation of Ca2+ signals, i.e. amplitude and/or frequency, can result in regulation of specific cellular functions. The emerging data reveal a dynamic Ca2+ signaling complex composed of TRPC1/Orai1/STIM1 that is physiologically consistent with the dynamic nature of the Ca2+ signal that is generated. This review will focus on the recent studies which demonstrate critical aspects of the TRPC1 channelosome that are involved in the regulation of TRPC1 function and TRPC1-SOC-generated Ca2+ signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号