首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathogenic Clostridium difficile produces two major protein toxins, toxin A and toxin B. We used the Bacillus megaterium expression system for expression of recombinant toxin A. The construct for the toxin A gene was obtained by the following cloning strategy: the gene for toxin A was generated in three parts, each of them ligated into a cloning vector. The three parts were sequentially fused to the complete gene. The holotoxin gene was ligated into the expression vector pWH1520. This vector was modified to generate a toxin with a C-terminally located His-tag. Gene expression in the B. megaterium system resulted in an approximate 300 kDa protein, which was identified by specific antibody as toxin A. Recombinant, His-tagged toxin A was purified by Ni(2+) as well as thyroglobulin affinity chromatography. Characterization of the recombinant toxin A showed identical cytotoxicity and in vitro-glucosyltransferase activity as the native toxin A from C. difficile.  相似文献   

2.
A study was made of the effect of botulin, type B, on the acetylcholine-cholinesterase system. High doses of the toxin increased the level of acetylcholine in the peripheral blood nervous system, as well as in the central nervous system. Injection of DLM of the toxin results in elevation of the acetylcholine level in the peripheral nervous system. Cholinesterase activity was practically unchanged.  相似文献   

3.
Clostridium difficile toxin A is a cytotoxic enterotoxin known to be active on all mammalian cell lines tested up to now. It induces a disruption of the cytoskeleton, particularly the microfilament system, leading to inhibition of cell proliferation. Here, we describe some effects of toxin A on the leukemic T cell line JURKAT. Cells exposed to the toxin did not divide, as cell numbers remained constant for 3 days in the presence of 0.5 to 1.0 micrograms/ml of the toxin. However, these cells were found to become multinucleated, a phenomenon which was time- and dose-dependent. After treatment for 72 h with 0.5 micrograms/ml toxin A, 95% of the cells were multinucleated and had a considerably increased cell diameter. These effects in JURKAT cells were partially reversible upon removal of the toxin within 12 h after the beginning of toxin exposure, but irreversible after 24 h of toxin treatment. These results suggest a continuing nuclear division in the absence of cytoplasmic division, i.e., an effect of toxin A on contractile ring formation. The JURKAT cell is the first cell type reported to respond to toxin A with multinucleation.  相似文献   

4.
The electrophoretic mobility of enterotoxin B was investigated through the use of the disc electrophoresis technique. Ideal patterns were developed with a 7.5% acrylamide gel system (pH 4.3). The toxin can be separated and identified from other complex proteins such as serum or suspect samples of foods by this technique. The technique can be used as an assay method for the toxin as well as to elucidate physical changes in the toxin due to temperature. The method should not be considered exclusive for enterotoxin B.  相似文献   

5.
6.
Site in Cell-free Protein Synthesis Sensitive to Diphtheria Toxin   总被引:7,自引:1,他引:6  
The effects of diphtheria toxin on cell-free protein synthesis in a bacterial system, and preparations obtained from animals that were sensitive and resistant to toxin were examined. In the presence of nicotinamide adenine dinucleotide (NAD), toxin inhibited the incorporation of amino acids by endogenous and synthetic polynucleotides in both rat liver and guinea pig liver cell-free systems that were exposed to 6 Lf units per ml of toxin. A cell-free system derived from Streptococcus faecalis was resistant to high concentrations of toxin. Dialyzed toxin-antitoxin floccules that are formed in the presence of NAD and the 105,000 x g supernatant fluid from rat liver contain NAD. Such floccules are also active in protein synthesis in the absence of added transferase I or II. An operational model presents the view that the intoxication complex is formed at the ribosomal level and occurs in two steps. First, the toxin molecule binds to transferase II and alters its stereospecific relationship to transferase I, but it does not result in an inactive complex. Second, the stereospecific alteration in transferase I, but it does not result in an inactive complex. Second, the stereospecific alteration in transferase II caused by the binding of diphtheria toxin allows NAD to bridge between transferase I and II, which then results in an inactivated complex. The sensitivity of the cell-free system derived from the normally resistant rat implies that in some cells the cell membrane serves as a permeability barrier to the toxin molecule. The resistance of bacterial cell-free protein synthesizing systems to diphtheria toxin may reflect basic differences between transferase enzymes from bacterial and mammalian sources.  相似文献   

7.
The effect of tetanus toxin on neuropeptide hormone release from isolated nerve endings of the neural lobe of rat pituitaries (neurosecretosomes) was measured in a perfusion system. Tetanus toxin inhibited depolarization-evoked release of oxytocin and vasopressin in a time- and dose-dependent manner. At 1 microgram/ml, tetanus toxin blocked stimulated release by 85%. Tetanus toxin that was preincubated with a neutralizing monoclonal antibody or heated to 100 degrees C had no effect on hormone release. The ionophores A23187 and ionomycin were potent stimulators of hormone release in control nerve endings, but were not able to overcome the effect of tetanus toxin in intoxicated nerve endings. 8-Bromo-cyclic GMP, which has been reported to reverse the action of tetanus toxin in PC12 cells, had no effect on the action of tetanus toxin in neurosecretosomes. Neurosecretosomes are the first system in which tetanus toxin has been shown to block release from peptidergic nerve terminals. They appear to be a valuable in vitro system for studying the biochemical mechanism of tetanus toxin action.  相似文献   

8.
Tetanus toxin was found to be a potent inhibitor of neurosecretion in the rat pheochromocytoma cell line PC12, a system in which biochemical and functional studies could be performed in parallel. Incubation of the cells with 10 nM tetanus toxin (3 h) led to an inhibition of acetylcholine release by 75-80% when evoked by 200 microM veratridine, 1 mM carbachol, or 2 mM Ba2+. The main characteristics of the inhibition process are: 1) the toxin is very potent, with threshold doses of 10 pM; 2) the action of toxin is blocked at low temperature (0 degrees C) and by antitoxin; 3) the effects are dose- and time-dependent; 4) a concentration-dependent lag phase precedes the onset of the inhibitory effects. Thus the PC12 cultures are a valid system for studies on the underlying molecular process in tetanus action. This system was exploited by the use of long term incubation studies to examine the processes responsible for the lag phase. When cells were incubated with 0.1 nM 125I-tetanus toxin, cell-associated toxin reached a plateau of 16 fmol of toxin/mg of protein, yet the toxic effects did not appear until 12 h. Further, PC12 cells were found to rapidly internalize tetanus toxin, with a half-life of 1-2 min, once it was bound to the surface of the cells. Thus, the lag phase results from steps that occur in the intracellular compartment after internalization. An important discovery was that the differentiation state of the PC12 cells was a critical factor in determining sensitivity to tetanus toxin. Cells that were cultured with nerve growth factor for 8-12 days were very sensitive to toxin. In contrast, acetylcholine release from nondifferentiated, autodifferentiated, or dexamethasone-treated cultures was insensitive to tetanus toxin. Since differential expression of high affinity tetanus toxin receptors cannot explain these results, it is concluded that PC12 cells are capable of expressing different forms of excitation-secretion coupling mechanisms. Tetanus toxin should prove a valuable probe to further distinguish these processes.  相似文献   

9.
Large quantities of Bacillus thuringiensis (Bt) corn plant residue are left in the field after harvest, which may have implications for the soil ecosystem. Potential impacts on soil organisms will also depend on the persistence of the Bt toxin in plant residues. Therefore, it is important to know how long the toxin persists in plant residues. In two field studies in the temperate corn-growing region of Switzerland we investigated degradation of the Cry1Ab toxin in transgenic Bt corn leaves during autumn, winter and spring using an enzyme-linked immunosorbent assay (ELISA). In the first field trial, representing a tillage system, no degradation of the Cry1Ab toxin was observed during the first month. During the second month, Cry1Ab toxin concentrations decreased to approximately 20% of their initial values. During winter, there was no further degradation. When temperatures again increased in spring, the toxin continued to degrade slowly, but could still be detected in June. In the second field trial, representing a no-tillage system, Cry1Ab toxin concentrations decreased without initial delay as for soil-incorporated Bt plants, to 38% of the initial concentration during the first 40 days. They then continued to decrease until the end of the trial after 200 days in June, when 0.3% of the initial amount of Cry1Ab toxin was detected. Our results suggest that extended pre- and post-commercial monitoring are necessary to assess the long-term impact of Bt toxin in transgenic plant residues on soil organisms.  相似文献   

10.
A micro capillary agar-gel diffusion system for the detection of botulinal toxin in foods and cultures was developed and evaluated. Toxins types A, B, and E, produced in culture broth with and without added trypsin, and type E toxin, produced in inoculated canned clams, were tested with this system and with the mouse bioassay procedure. With nontrypsinized toxin, the capillary diffusion system detected as little as 100 minimal lethal doses (MLD) per ml but was effective only at higher levels, 10(6) to 1.5 x 10(7) MLD/ml, when used with trypsinized toxin. The inability to detect lower levels of trypsinized toxin was due to thioglycolate present in the medium used to produce toxin. Evidently, trypsinization of toxin produces polypeptides still held together by disulfide bonds. Cleavage of these bonds by reduction with thioglycolate reduces the sensitivity of the capillary method. Trypsinized toxin produced in broth without thioglycolate was detected as readily as nontrypsinized toxin. Toxin was detected in canned clams containing as low as 100 MLD/ml. No cross-reactions were observed with type E toxin and types A and B antitoxins. Extensive studies using the capillary method for detecting types A and B toxins were not performed; however, a suspected sample of commercially canned mushrooms gave a positive type B reaction but not a type A reaction. This typing was confirmed later by the mouse bioassay. Toxin was present at a level of 100 MLD/ml. The procedure developed may prove useful as a rapid screening method for the detection of botulinal toxin in foods, with final identification made by using the mouse bioassay.  相似文献   

11.
When tetanus toxin is made by fermentation with Clostridium tetani, the traditional source of iron is an insoluble preparation called reduced iron powder. This material removes oxygen from the system by forming FeO2 (rust). When inoculated in a newly developed medium lacking animal and dairy products and containing glucose, soy-peptone, and inorganic salts, growth and toxin production were poor without reduced iron powder. The optimum concentration of reduced iron powder for toxin production was found to be 0.5 g/l. Growth was further increased by higher concentrations, but toxin production decreased. Inorganic iron sources failed to replace reduced iron powder for growth or toxin formation. The iron source that came closest was ferrous ammonium sulfate. The organic iron sources ferric citrate and ferrous gluconate were more active than the inorganic compounds but could not replace reduced iron powder. Insoluble iron sources, such as iron wire, iron foil, and activated charcoal, were surprisingly active. Combinations of activated charcoal with soluble iron sources such as ferrous sulfate, ferric citrate, and ferrous gluconate showed increased activity, and the ferrous gluconate combination almost replaced reduced iron powder. It thus appears that the traditional iron source, reduced iron powder, plays a double role in supporting tetanus toxin formation, i.e., releasing soluble sources of iron and providing an insoluble surface.  相似文献   

12.
细菌毒素-抗毒素系统的研究进展   总被引:1,自引:0,他引:1  
毒素-抗毒素系统(toxin-antitoxin system,TA)由两个共表达的基因组成,其中一个基因编码不稳定的抗毒素蛋白(antitoxin),另一个基因编码稳定的毒素蛋白(toxin).毒素-抗毒素系统最早发现于一些低拷贝的质粒,用来维持低拷贝质粒在菌群中的稳定存在.随后的研究表明,毒素-抗毒素系统广泛存在于细菌,包括一些致病菌的染色体上.在营养缺乏等不良生长条件下,由于基因表达的抑制和蛋白酶的降解作用,不稳定的抗毒素蛋白减少,从而产生游离的毒素蛋白,导致细菌的生长抑制和死亡.毒素-抗毒素系统的生理功能目前还存在争议,有学者认为细茼染色体上的毒素-抗毒素系统可以在不良生长状况下介导细菌的死亡,即细茼程序性细胞死亡(baeterial programmedcell death).但也有证据显示,毒素-抗毒素系统的功能更偏向于应激状态下的生理调节方面,即只起应激状态下的抑菌作用而不是杀菌作用.对细菌生长调控中毒素-抗毒素系统的作用机理进行综述,并探讨毒素-抗毒素系统研究的理论和应用价值.  相似文献   

13.
14.
The cell line C9 used in this paper has a resting potential of --50 mV (+/- 10 mV) but is unable to generate an action potential upon electrical stimulation. The cell membrane has receptors for the selectivity filter toxin tetrodotoxin as well as for the gating system toxins, veratridine, scorpion toxin and sea anemone toxin. The Na+ channel which remains silent to electrical stimulation in the absence of toxins can be chemically activated by the gating system toxins. This has been demonstarted by electrophysiological techniques and by 22Na+ flux studies. The electrophysiological approach has shown that the sea anemone toxin is able to induce a spontaneous slow-wave activity inhibited by tetrodotoxin. 22Na+ influx analyses have shown that veratridine and the sea anemone toxin produce an important increase of the initial rate of 22Na+ influx into the C9 cell. The stimulation of 22Na+ entry by these gating system toxins is similar to that found using spiking neuroblastoma cells. Veratridine and the sea anemone toxin on one hand as well as veratridine and the scorpion toxin on the other hand are synergistic in their action to stabilize an open and highly permeable form of the sodium channel. Stimulation of 22Na+ entry into the cell through the sodium channel maintained open by the gating system neurotoxins is completely suppressed by tetrodotoxin.  相似文献   

15.
The SpvB protein from Salmonella enterica was recently discovered as an actin-ADP-ribosylating toxin. SpvB is most likely delivered via a type-III secretion system into eukaryotic cells and does not have a binding/translocation component. This is in contrast to the family of binary actin-ADP-ribosylating toxins from various Bacillus and Clostridium species. However, there are homologies in amino acid sequences between the C-terminal domain of SpvB and the catalytic domains of the actin-ADP-ribosylating toxins such as C2 toxin from Clostridium botulinum and iota toxin from Clostridium perfringens. We compared the biochemical properties of the catalytic C-terminal domain of SpvB (C/SpvB) with the enzyme components of C2 toxin and iota toxin. The specificity of C/SpvB concerning the modification of G- or F-actin was comparable to the C2 and iota toxins, although there were distinct differences regarding the recognition of actin isoforms. C/SpvB and iota toxin modify both muscle alpha-actin and nonmuscle beta/gamma-actin, whereas C2 toxin only modifies beta/gamma-actin. In contrast to the iota and C2 toxins, C/SpvB possessed no detectable glycohydrolase activity in the absence of a protein substrate. The maximal reaction rates were comparable for all toxins, whereas variable K(m) values for NAD were evident. We identified arginine-177 as the modification site for C/SpvB with the actin homologue protein Act88F from Drosophila.  相似文献   

16.
The effects of diphtheria toxin on the Cecropia silkworm   总被引:8,自引:0,他引:8  
1. The metamorphosis of the Cecropia silkworm is accompanied by large and systematic changes in the insect's sensitivity to diphtheria toxin. 2. Injection of less than 1 gamma of toxin into mature caterpillars, prepupae, or developing adults causes cessation of development followed by delayed death 1 to 5 weeks later. 3. Dormant pupae, on the contrary, are resistant to 70 gamma of toxin and may survive even this enormous dose for over 4 weeks. One-hundredth of this dose, however, prevents pupae from initiating adult development. 4. Tetanus toxin, to which the insect is insensitive, failed to duplicate any of these effects. 5. Maximal sensitivity to diphtheria toxin is characteristic of those stages in the life history which depend on the presence and function of the cytochrome system. Resistance to the toxin, as in the case of the diapausing pupa, is correlated with the existence and utilization of metabolic pathways other than the usual cytochrome system. 6. This correlation persists within the individual insect. Thus, within the diapausing pupa, the toxin fails to affect the heart in which a normal cytochrome system is absent, but, within the same insect, causes a degeneration of the intersegmental muscles in which an intact cytochrome system is present. 7. These several lines of evidence are interpreted in support of the conclusion that diphtheria toxin acts by blocking the synthesis of one or more components in the cytochrome system.  相似文献   

17.
Attempts to target antibody-ricin conjugates (immunotoxins) to designated cell types in vivo may be thwarted by their rapid clearance by hepatic reticuloendothelial cells which have receptors that recognise oligosaccharide side chains on the toxin. The B-chain of ricin contains high mannose type oligosaccharides and the A-chain contains a complex unit (GlcNAc)2-Fuc-Xyl-(Man)4-6, all of which potentially could be recognised by the reticuloendothelial system. Treatment of ricin with a mixture of sodium metaperiodate and sodium cyanoborohydride at pH 3.5 resulted in oxidative cleavage of the carbohydrates and reduction of the aldehyde groups thus formed to primary alcohols. By conducting the modification procedure at acidic pH, both the possibility of Schiff's base formation between the aldehyde groups and amino groups in the protein and the possibility of non-specific oxidation of amino acids were minimised. The extent of the carbohydrate modification depended on the duration of treatment, resulting maximally in the destruction of 13 of the 18 mannose residues and of all xylose and fucose. The toxicity of the modified toxin to cells in culture declined by up to 90% as the carbohydrate was destroyed. This was not due to a reduced ability of the B-chain to bind to cells or of the A-chain to inactivate ribosomes. In contrast to the in vitro results, the toxicity of the modified toxin to mice and rats was elevated by up to fourfold. The modification greatly reduced the clearance of the toxin by non-parenchymal cells in the liver and prevented the damage to hepatic Kupffer and sinusoidal cells and to the red pulp of the spleen that is inflicted by the native toxin. The elevated toxicity to animals appears to be because the modified toxin evades the reticuloendothelial system and persists in the bloodstream for longer periods, thus resulting in lethal damage to vital tissues in the animal at lower dosage. The results suggest that immunotoxins prepared from modified ricin would not be readily cleared by the reticuloendothelial system and so be more effective at killing their target cells.  相似文献   

18.
A bioassay system was developed for studying the in vitro reaction of sunflower ( Helianthus annuus L. cv. 'Nanus') against the toxin produced by the virulent pathotype IMI 366417 (1) of the pathogenic fungus Alternaria alternata. Cotyledons from 2-week-old seedlings were cultured on a MS (Murashige and Skoog) medium supplemented with 0.3 μM NAA (α-napthylacetic acid) and 1.3 μM BA (6-benzyladenine). Exponentially growing calli were transferred to selective media containing toxin solutions at various concentrations. The fresh weight of the cultured calli was reduced as the toxin concentration increased, although the viability of the cells, expressed as callus dehydrogenase activity, increased. Selection for toxinresistant genotypes was attempted at 30% toxin concentration, which causes a 90% reduction in callus growth. After one month in culture, 18% of the calli demonstrated resistance to the toxin. However, no plants could be regenerated from those calli after transfer onto a MS medium supplemented with 5.4 μM NAA and 4.4 μM BA. The effect of the toxin purification method on toxin yield and biological activity, as well as its possible mode of cellular action are discussed. The results of these experiments may contribute to a better understanding of the disease mechanism and help establish an efficient selection method of resistant sunflower genotypes.  相似文献   

19.
The virulence factor SpvB is a crucial component for the intracellular growth and infection process of Salmonella enterica. The SpvB protein mediates the ADP-ribosylation of actin in infected cells and is assumed to be delivered directly from the engulfed bacteria into the host cell cytosol. Here we used the binary Clostridium botulinum C2 toxin as a transport system for the catalytic domain of SpvB (C/SpvB) into the host cell cytosol. A recombinant fusion toxin composed of the enzymatically inactive N-terminal domain of C. botulinum C2 toxin (C2IN) and C/SpvB was cloned, expressed, and characterized in vitro and in intact cells. When added together with C2II, the C2IN-C/SpvB fusion toxin was efficiently delivered into the host cell cytosol and ADP-ribosylated actin in various cell lines. The cellular uptake of the fusion toxin requires translocation from acidic endosomes into the cytosol and is facilitated by Hsp90. The N- and C-terminal domains of SpvB are linked by 7 proline residues. To elucidate the function of this proline region, fusion toxins containing none, 5, 7, and 9 proline residues were constructed and analyzed. The existence of the proline residues was essential for the translocation of the fusion toxins into host cell cytosol and thereby determined their cytopathic efficiency. No differences concerning the mode of action of the C2IN-C/SpvB fusion toxin and the C2 toxin were obvious as both toxins induced depolymerization of actin filaments, resulting in cell rounding. The acute cellular responses following ADP-ribosylation of actin did not immediately induce cell death of J774.A1 macrophage-like cells.  相似文献   

20.
Theoretically, the activity of AB-type toxin molecules such as the insecticidal toxin (Cry toxin) from B. thuringiensis, which have one active site and two binding site, is improved in parallel with the binding affinity to its receptor. In this experiment, we tried to devise a method for the directed evolution of Cry toxins to increase the binding affinity to the insect receptor. Using a commercial T7 phage-display system, we expressed Cry1Aa toxin on the phage surface as fusions with the capsid protein 10B. These recombinant phages bound to a cadherin-like protein that is one of the Cry1Aa toxin receptors in the model target insect Bombyx mori. The apparent affinity of Cry1Aa-expressing phage for the receptor was higher than that of Cry1Ab-expressing phage. Phages expressing Cry1Aa were isolated from a mixed suspension of phages expressing Cry1Ab and concentrated by up to 130,000-fold. Finally, random mutations were made in amino acid residues 369–375 in domain 2 of Cry1Aa toxin, the mutant toxins were expressed on phages, and the resulting phage library was screened with cadherin-like protein-coated beads. As a result, phages expressing abnormal or low-affinity mutant toxins were excluded, and phages with high-affinity mutant toxins were selected. These results indicate that a method combining T7 phage display with selection using cadherin-like protein-coated magnetic beads can be used to increase the activity of easily obtained, low-activity Cry toxins from bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号