首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Results from kinetic studies on the incorporation of 3H-5-uridine and 3H-8-adenosine into the acid-soluble nucleotide poor and nucleic acids by Novikoff hepatoma cells (subline N1S1-67) in suspension culture indicate that the uridine transport reaction is saturated at about 100 μM and that for adenosine at about 10 μM nucleoside in the medium, and that above 100 μM simple diffusion becomes the predominant mode of entry of both nucleosides into the cell. The Km of the transport reactions is approximately 1.3 × 10?5 M for uridine and 6 × 10?6 M for adenosine. The incorporation of these nucleosides into both the nucleotide pool and into nucleic acids seems to be limited by the rate of entry of the nucleic acid synthesis from the rate of incorporation of nucleosides. Other complicating factors are a change with time of labeling in the relative proporation of nucleoside incorporated into DNA and into the individual nucleotides of RNA, the splitting of uridine to uracil by th ecells, the deamination of adenosine kto inosine and the subsequent cleavage of inosine to hypoxanthine. Various lines of evidence are presented which indicate that the overall nucleotide pools of the cells are very small under normal growth conditions. During growth in the presence of 200 μM uridine or adenosine, however, the cells continue to convert the nucleosides into intracellular nucleotides much more rapidly than required for nucleic acid synthesis. This results in an accumulation of free uridine and adenosine nucleotides in the cells, the maximum amounts of which are at least equivalent to the amount of these nucleotides in total cellular RNA.  相似文献   

3.
In vitro cultures of prothoracic glands of larvae of Periplaneta americana and of some Lepidoptera as biological tests are described. Incorporation of 3H-5-uridine in the RNA of the prothoracic glands represented the measure of the cellular activity of the glands.Activation factor I separated from extracts of corpora cardiaca of the cockroach Periplaneta americana by means of gel filtration techniques caused significant stimulation of RNA synthesis of the glands.  相似文献   

4.
E. Brändle  K. Zetsche 《Planta》1971,99(1):46-55
Summary Rifampicin (10g/ml) strongly inhibits the incorporation of [5-3H]-uridine into the chloroplast RNA of anucleate cells of the green alga Acetabularia mediterranea, whereas incorporation into nuclear RNA is hardly affected.Furthermore, at a concentration range of 1–10g/ml rifampicin has only a small effect on stalk- and cap formation in nucleate posterior parts of the stalk. As has already been shown, the morphogenesis of such cell segments depends on the synthesis of new RNA in the nucleus. Similarly rifampicin only slightly inhibits the synthesis of the enzyme UDPG-pyrophosphorylase, which is coded by nuclear DNA.These slight inhibitions are interpreted as secondary effects arising from a blockage of plastid RNA synthesis, since both nucleate and anucleate cells respond in a similar manner and to the same degree.In contrast the increase in the chlorophyll content in nucleate and anucleate cells is severely impaired by the antibiotic. These findings indicate that the nucleus and the plastids contain different DNA-dependent RNA-polymerases.  相似文献   

5.
Novikoff rat hepatoma cells (subline NlSl-67) in suspension culture incorporate 3H-5-uridine into the acid-soluble nucleotide pool more rapidly than into RNA, resulting in the accumulation of labeled UTP in the cells. When labeled uridine is removed from the medium after 20 minutes or 4.75 hours of labeling, the rate of incorporation of label from the nucleotide pool into RNA decreases to less than 10% of the original rate within five to ten minutes, in spite of the presence of a large pool of labeled UTP in the cells, and incorporation ceases completely if an excess of unlabeled uridine is present during the chase. Upon addition of 14C-uridine to 3H-uridine pulse-labeled, chased cells, the 14C begins to be incorporated into RNA without delay and at a rate predetermined by the concentration of 14C-uridine in the medium and without affecting the fate of the free 3H-nucleotides labeled during the pulse-period. The results are interpreted to indicate that uridine is incorporated into at least two different pools, only one of which serves as primary source of nucleotides for RNA synthesis. During active synthesis of RNA, the latter pool of free nucleotides is very small and rapidly exhausted when uridine is removed from the medium. However, UTP accumulates in this pool when cells are labeled at 4–6°, since at this temperature RNA synthesis is blocked while uridine is still phosphorylated by the cells, and the UTP is rapidly incorporated into RNA during a subsequent ten-minute chase at 37°. From these types of experiments it is estimated that only 20–25% of the total uridine nucleotides formed in the cells from uridine in the medium is directly available for RNA synthesis and that the remainder becomes available only at a slow rate. Evidence is presented which suggests that one uridine nucleotide pool is located in the cytoplasm and another in the nucleus and that mainly the nuclear pool supplies nucleotides for RNA synthesis. The size of the latter pool is under strict regulatory control, since preincubation of the cells with 0.5 mM unlabeled uridine has little or no effect on the subsequent incorporation of 3H-uridine, although it results in an increase of the overall cellular uridine nucleotide content to at least 5 mM. Other results indicate that adenosine is also incorporated into two independent nucleotide pools, whereas the cells normally appear to possess a single thymidine nucleotide pool.  相似文献   

6.
Summary Tetrahymena pyriformis W were brought to a nonmultiplying state by removal of required amino acids from their growth medium. After amino-acid replacement, the incorporation rates of H3-uridine, H3-thymidine and H3-leucine were measured by the autoradiographic method. Following amino-acid replacement, the first response was detected in RNA synthesis, then protein synthesis, then DNA synthesis and, lastly, in cell division. Amino-acid deprived cells showed a 23% net increase in DNA content, a result supporting the view of others that protein synthesis is not necessary for the initiation of DNA synthesis but is necessary for the maintainance of DNA synthesis.  相似文献   

7.
Tritium labelling and cytochemistry of extra DNA in Acheta   总被引:3,自引:1,他引:2  
Females of Acheta domesticus were injected with H3-thymidine and H3-uridine at various stages of development in order to study DNA and RNA synthesis in the DNA body present in the oocytes. Staining with alkaline fast green, azure B and the Feulgen reaction were employed as cytochemical tests. The following main results were obtained.
  1. The DNA body appears in the oogonia at interphase as a Feulgen positive spherical structure 2 microns in diameter and is seen in subsequent mitotic divisions as a slightly smaller structure of variable shape. H3-thymidine autoradiography discloses that the DNA present in this body is synthesised at a different time from the chromosomal DNA.
  2. At interphase and during the early prophase of meiosis the DNA body increases in size becoming a large Feulgen positive sphere 6 microns in diameter. Small nucleoli are present within this body. The DNA of the body is complexed with histone as revealed by alkaline fast green staining. H3-thymidine labelling discloses that it is at these stages that the bulk of the DNA synthesis takes place in the body.
  3. Every oocyte contains a DNA body, and no body of comparable size or shape seems to be present in the male meiotic prophase.
  4. At pachytene and diplotene the DNA body acquires the appearance of a “puff”. Two zones can be distinguished inside the DNA body: (1) an inner core of DNA and an outer shell of RNA. The inner core is Feulgen positive and stains light green with azure B, the outer shell is Feulgen negative and stains purple-violet with azure B, as does the cytoplasm. From the inner DNA core many Feulgen positive fibrils radiate into the outer RNA shell. These fibrils appear unstained or slightly greenish with Azure B, forming a transparent network in a purple-violet background. This gives the body the typical appearance of a “puff”. H3-uridine incorporation reveals that the RNA synthesis occurs in the outer RNA shell of the body and in the chromosomes. RNase treatment removes the H3-uridine incorporated into these regions.
  5. At the end of diplotene the DNA body starts to disintegrate. The DNA core breaks up into minor components and the outer RNA zone also begins to disintegrate. By late diplotene the whole body has vanished, releasing DNA, histone and RNA into the nucleus. Subsequently the nuclear envelope disintegrates as it regularly does at the end of prophase of meiosis.
  6. The simplest interpretation of the above results is that the DNA body represents hundreds of copies of the genes of the nucleolar organizing region.
  相似文献   

8.
Summary The incorporation of [3H]-5-uridine into cytoplasmic 18S and 28S ribosomal ribonucleic acid (rRNA) was examined in Colcemid-synchronized strain L cells during G1 and S phases of the cell cycle in the presence of 5×10−5 m uridine, which was determined to be the saturating concentration for this system. The data show that in S phase a significant increase occurs in the level of [3H]-5-uridine incorporation into each rRNA species. During a 90-min exposure period, S phase cells incorporate 3.4 times as much [3H]-5-uridine into 18S rRNA and 1.9 times as much into 28S rRNA as do G1 cells. The time required for maturation of the ribosomal RNA species during G1 and during S phase is the same, with 18S rRNA appearing in the cytoplasm in 20 min and 28S rRNA in 40 min.  相似文献   

9.
The uptake of 3H-uridine into RNA and of 3H-thymidine into DNA was investigated in synchronized Chinese hamster cells which had been exposed to thiopyrimidine ribonucleosides. The cells were synchronized at metaphase by reversal of colcemid inhibition; these cells were then labeled with either 3H-thymidine or 3H-uridine at selected times, and analyzed in autoradiographs. Incorporation of 3H-thymidine into DNA was not inhibited by administration to the cells of 2-thiouridine or 4-thiouridine (4 × 10−3 M). Exposure of the cells to the anti-metabolites for over 15 h significantly reduced the incorporation of 3H-uridine into nuclear RNA and completely blocked the labeling of cytoplasmic RNA. This finding is interpreted as an indication that RNA synthesis was inhibited in cells which continued to synthesize DNA. The inhibition of RNA synthesis hindered cell division and decreased cell viability. This lethal effect is similar to the “unbalanced growth” induced by inhibitors of DNA synthesis. The thiopyrimidine ribonucleosides, however, killed mammalian cells without inhibiting DNA synthesis.  相似文献   

10.
A system for the measurement of the RNA-synthesis of bone marrow cells of the rat has been developed and the incorporation of [3H]-uridine into the cellular RNA has been standardized with respect to the time of incubation, the concentration of [3H]-uridine and the number of cells. A plateau of the incorporation of [3H]-uridine into the RNA is reached after 20 min of incubation and is interpreted as the expression of a steady state in synthesis and degradation of the cellular RNA. A constant labelling of the RNA is reached above 8.3 with 10(-6)M [3H]-uridine. The optimal cell number in the 500 mul standard assay is 4 with 10(6). Actinomycin D inhibits the RNA-synthesis to 94% in a concentration of 1.2 with 10(2) mug/ml. The cryoprotectants dimethylsulfoxide, polyethylene-oxide and glycerol and the potential haematotoxic substances dichlorodiphenyltrichloroethane and gamma-hexane were tested in this system. 5% dimethylsulfoxide and 10% polyethylen-oxide in Eagle's-medium with ethylendiamintetra-acetate do not influence the RNA-synthesis. 5% glycerol reduces the incorporation of [3H]-uridine into the cellular RNA to about 30%.  相似文献   

11.
Origin and function of the nucleolar apparatus in nurse cell nuclei of Calliphora erythrocephala have been investigated by cytological and autoradiographic methods in some inbred lines of laboratory blowflies with well paired polytene chromosomes in the nurse cell nuclei. Besides the nucleolus at chromosome VI large numbers of multiple free nucleoli develop in the highly polyploidized nurse cells during oocyte growth. The nucleoli incorporate H3-uridine in a considerable amount producing a homogeneous and RNase-sensitive label even after short time incubation. Their capacity of RNA synthesis is independent of their spatial relationships to other nuclear components. DNA particles in the nucleoli could be identified by the Feulgen reaction and by fluorescence staining with N,N'-diethylpseudoisocya-ninchloride, which also demonstrates the existence of own templates for autonomous RNA synthesis. There are indications that the nucleolus' own DNA is produced by gene amplification beyond the level of endomitotic polyploidization in the nurse cell nuclei. A quantitative estimation of grain density in the autoradiograms shows a rigorous shift of rRNA synthesis: at least 72% of all newly synthesized macromolecular RNA in nurse cell nuclei as contrasted to 13 % of nucleolar RNA synthesis in bristle forming cells with a similar degree of polyploidy. It seems that the nurse cell nuclei of Calliphora in addition to polyploidization increase their template capacity for synthesizing rRNA in a similar way as has repeatedly been demonstrated for Amphibia. Cytological and physiological peculiarities of the nurse cells have been discussed from the viewpoint of their functional similarity to the oocyte nucleus.  相似文献   

12.
[2-14C]-uridine is rapidly taken up by sycamore cells in suspensionculture. A proportion of the radioactivity enters RNA withoutmeasurable delay, whilst the remainder equilibrates with a largepool of phosphorylated compounds, the major radioactive componentof which is 5'-UMP. Both the uracil and cytosine residues ofRNA receive label from [14C]-uridine and, when the cells aresupplied with high concentrations of uridine, these bases arederived almost exclusively from the nucleoside. [14C]-uridine is incorporated into RNA at all stages of thegrowth cycle of batch cultures; its continuing incorporation,when the total RNA content of the cells is rapidly decreasing,indicates a high rate of turnover of the total RNA. Long-termlabelling experiments also indicate turnover of RNA during thephase of active cell division and suggest that a large proportionof the degradation products are not re-utilized for RNA synthesis. Sycamore cells degrade [2-14C]-uridine with release of 14CO2.The proportion degraded increases from 25 per cent at an externaluridine concentration of 10–6M to 75 per cent at 10–3M. Despite this, nucleic acids are the only macromolecules thatreceive a significant amount of radioactivity from [2-14]C-uridine.  相似文献   

13.
Newborn rats were exposed to staged adaptation to altitude hypoxia in a pressure chamber at an atmospheric pressure corresponding to an altitude from 2000 to 9000 m. The time course of changes in the synthesis of RNA and DNA by the nuclei of muscle and connective tissue cells of the heart were studied by light autoradiography with the use of 3H-5-uridine and 3H-thymidine. In the course of early postnatal ontogenesis adaptation to altitude hypoxia was demonstrated to be accompanied by the intensified synthesis of nucleic acids by muscle and non-muscle cells of the heart, which is regarded as a compensatory-adaptation reaction of the myocardium to hyperfunction under the test experimental conditions.  相似文献   

14.
15.
Dr. W. Nagl 《Chromosoma》1969,28(1):85-92
The relationship between RNA synthesis and morphology of the nucleolus-organizing polytene chromosomes in the highly endopolyploid suspensor cells of Phaseolus vulgaris has been studied by actinomycin D treatment, temperature lowering, and H3-uridine autoradiography. Actinomycin D and low temperature induce a condensation of the giant chromosomes, particularly of the nuoleolus organizers and of the intranucleolar regions of the chromosomes. RNA synthesis occurs in the extended state of the chromosomes, but it ceases in the highly condensed state caused by the treatment of the cells either with actinomycin D or with low temperature.  相似文献   

16.
Tetrahymena pyriformis were brought to a non-growing state by removal of pyrimidines from their growth medium. During pyrimidine deprivation cell number increased 3- to 4 fold, and this increase was accompanied by one or more complete cycles of macronuclear DNA replication. Autoradiographic studies show that endogenous protein and RNA were turning over throughout starvation and that RNA breakdown products were used to support the DNA synthesis that occurred during the early period of starvation. However, after 72 hours of starvation all DNA synthesis and cell division had ceased. Feulgen microspectrophotometry shows the macronuclei of these cells to have been stopped at a point prior to DNA replication (G1 stage). After pyrimidine replacement the incorporation of H3-uridine, H3-adenosine, and H3-leucine was measured by the autoradiographic grain counting method. The results indicate that RNA synthesis began to increase almost immediately, but that there was a lag of almost an hour before an increase in protein synthesis. In agreement with the autoradiographic data, chemical data also show that cellular content of RNA began to increase shortly after pyrimidine replacement but that cellular protein content did not increase until about one hour later. Pulse labeling of the cells with H3-thymidine at intervals after pyrimidine replacement shows that labeled macronuclei first began to appear at 150 minutes; that 98 per cent of the macronuclei were in DNA synthesis at 240 to 270 minutes; and that the percentage then began to decrease from 300 to 390 minutes, at which time only 25 per cent of the macronuclei were labeled. Cellular content of DNA did not increase for at least 135 minutes after pyrimidine replacement; however, just before the first cells divided (360 minutes) the DNA content had doubled. After pyrimidine replacement the cells first began to divide at 360 minutes, and 50 per cent had divided at 420 minutes; however, all cells had not divided until 573 minutes. This technique of chemical synchronization of cells in mass cultures makes feasible detailed biochemical analysis of events leading to nuclear DNA replication and cell division.  相似文献   

17.
Incorporation of 3H precursors into the protein or RNA of exponentially growing human diploid fibroblasts (WI38) inhibited DNA synthesis and cell division for a dose-related period. During this period of “tritium-arrest”, which can last for at least a month, the cells remain viable by morphologic criteria and maintain balanced RNA and protein metabolism. The cultures are eventually overgrown by a dose-related fraction of the population which retains DNA synthetic capacity. Tritium-arrested cell populations are suggested as a possible model for the study of metabolism in non-dividing cells.  相似文献   

18.
THE study of macromolecular metabolism in eukaryotic cells has depended to a large extent on the use of selective inhibitors. Camptothecin is a potent, rapidly acting inhibitor of both DNA and RNA synthesis1–3 which first came to attention as a potential anti-tumour agent4 and which has since been shown to have the remarkable property of inducing breaks in cellular DNA5; it also has unusual effects on RNA synthesis possibly as a result of DNA breakage. We show that the drug causes aberrant synthesis of high molecular weight nuclear RNA, but has a much smaller effect on the labelling of 4S RNA and does not affect 5S RNA synthesis. If the effect on RNA synthesis is due to DNA breakage, the results suggest that the breaks are induced at specific points.  相似文献   

19.
We determined the absolute rates of RNA synthesis during embryogenesis in Drosophila melanogaster by measuring the incorporation of 3H-5-orotic acid into RNA, and the specific activity of the UTP pool. Initially (preblastoderm) the rate of RNA synthesis is relatively high, but declines to a lower level by gastrulation. The data suggest that RNA synthesis is initiated during very early embryogenesis.  相似文献   

20.
Periodate-oxidized adenosine and AMP were inhibitory to both RNA and DNA synthesis in Ehrlich tumor cells in culture. With periodate-oxidized adenosine, the inhibition of RNA synthesis paralleled the inhibition of DNA synthesis. Periodate-oxidized AMP, however, was more inhibitory to DNA synthesis than to RNA synthesis. With both compounds, there was a decrease in the conversion of [14C]cytidine nucleotides to [14C]deoxycytidine nucleotides in the acid-soluble pool. The borohy-dride-reduced trialcohol derivative of the periodate-oxidized adenosine compound was not inhibitory to DNA or RNA synthesis in the tumor cells. The incorporation of [3H]uridine into 28S and 18S ribosomal RNA was inhibited by both periodate-oxidized adenosine and AMP, but the incorporation of [3H]uridine in 45S, 5S, and 4S RNA was essentially unaffected by these compounds. Periodate-oxidized adenosine inhibited Ehrlich tumor cell growth in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号