首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibroblast Growth Factor (FGF) signaling is known to play an important role during cutaneous development. To elucidate the role of FGF10 during whisker formation, we examined the expression of Fgf10 in normal developing whiskers and phenotypes of Fgf10-deficient whiskers. Fgf10 is first expressed in the maxillary process, lateral and medial nasal processes, then in the mesenchymal cells underneath the future whisker placodes, and in the surrounding mesenchyme of developing whiskers. Fgf10-null whiskers exhibit a significant decrease in number and their structure is disorganized as revealed by scanning electron microscopy. Hair follicle marker genes such as Sonic hedgehog, Patched, and Patched 2 are aberrantly expressed in the mutant whiskers. Thus, FGF10 is required for proper whisker development mediated by SHH signaling in the mouse.  相似文献   

2.
The development of the eyelid requires coordinated cellular processes of proliferation, cell shape changes, migration and cell death. Mutant mice deficient in the fibroblast growth factor 10 (Fgf10) gene exhibit open-eyelids at birth. To elucidate the roles of FGF10 during eyelid formation, we examined the expression pattern of Fgf10 during eyelid formation and the phenotype of Fgf10-null eyelids in detail. Fgf10 is expressed by mesenchymal cells just beneath the protruding epidermal cells of the nascent eyelid. However, Fgf10-null epithelial cells running though the eyelid groove do not exhibit typical cuboid shape or sufficient proliferation. Furthermore, peridermal clumps are not maintained on the eyelid leading edge, and epithelial extension does not occur. At the cellular level, the accumulation of actin fibers is not observed in the mutant epithelial leading edge. The expression of activin/inhibin betaB (ActbetaB/Inhbb) and transforming growth factor alpha (Tgfa), previously reported to be crucial for eyelid development, is down-regulated in the mutant leading edge, while the onset of sonic hedgehog (Shh) expression is delayed on the mutant eyelid margin. Explant cultures of mouse eyelid primordia shows that the open-eyelid phenotype of the mutant is reduced by exogenous FGF10 protein, and that the expression of ActbetaB and Tgfa is ectopically induced in the thickened eyelid epithelium by the FGF10 protein. These results indicate a dual role of FGF10 in mouse eyelid development, for both proliferation and coordinated migration of eyelid epithelial cells by reorganization of the cytoskeleton, through the regulation of activin, TGFalpha and SHH signaling.  相似文献   

3.
Little is known about the regulation of cell fate decisions that lead to the formation of five pairs of mammary placodes in the surface ectoderm of the mouse embryo. We have previously shown that fibroblast growth factor 10 (FGF10) is required for the formation of mammary placodes 1, 2, 3 and 5. Here, we have found that Fgf10 is expressed only in the somites underlying placodes 2 and 3, in gradients across and within these somites. To test whether somitic FGF10 is required for the formation of these two placodes, we analyzed a number of mutants with different perturbations of somitic Fgf10 gradients for the presence of WNT signals and ectodermal multilayering, markers for mammary line and placode formation. The mammary line is displaced dorsally, and formation of placode 3 is impaired in Pax3ILZ/ILZ mutants, which do not form ventral somitic buds. Mammary line formation is impaired and placode 3 is absent in Gli3Xt-J/Xt-J and hypomorphic Fgf10 mutants, in which the somitic Fgf10 gradient is shortened dorsally and less overall Fgf10 is expressed, respectively. Recombinant FGF10 rescued mammogenesis in Fgf10(-/-) and Gli3Xt-J/Xt-J flanks. We correlate increasing levels of somitic FGF10 with progressive maturation of the surface ectoderm, and show that full expression of somitic Fgf10, co-regulated by GLI3, is required for the anteroposterior pattern in which the flank ectoderm acquires a mammary epithelial identity. We propose that the intra-somitic Fgf10 gradient, together with ventral elongation of the somites, determines the correct dorsoventral position of mammary epithelium along the flank.  相似文献   

4.
The normal development of eyes relies on proper signaling through Fibroblast growth factor (FGF) receptors, but the source and identity of cognate ligands have remained largely unknown. We have found that Fgf19 is expressed in the developing chicken retina. In situ hybridization discloses dynamic expression patterns for Fgf19 in the optic vesicle, lens primordia and retinal horizontal cells. Overall expression pattern of Fgf19 during chicken embryogenesis was also examined: Fgf19 is expressed in the regions associated with cranial placodes induction, boundary regions of rhombomeres, somites, specific groups of neural cells in midbrain, hindbrain, and those derived from epibranchial placodes, and the apical ectodermal ridge of limb buds. Expression pattern of the Fgf19-orthologous gene Fgf15 was further examined in the mouse developing eye. Fgf15 is expressed in the optic vesicle, a subset of progenitor cells of neural retina, and emerging ganglion and amacrine cells during retinogenesis.  相似文献   

5.
6.
Lineage formation in the lung mesenchyme is poorly understood. Using a transgenic mouse line expressing LacZ under the control of Fgf10 regulatory sequences, we show that the pool of Fgf10-positive cells in the distal lung mesenchyme contains progenitors of the parabronchial smooth muscle cells. Fgf10 gene expression is slightly repressed in this transgenic line. This allowed us to create a hypomorphic Fgf10 phenotype by expressing the LacZ transgene in a heterozygous Fgf10 background. Hypomorphic Fgf10 mutant lungs display a decrease in beta-galactosidase-positive cells around the bronchial epithelium associated with an accumulation of beta-galactosidase-expressing cells in the distal mesenchyme. This correlates with a marked reduction of alpha smooth muscle actin expression, thereby demonstrating that FGF10 is mostly required for the entry of mesenchymal cells into the parabronchial smooth muscle cell lineage. The failure of exogenous FGF10 to phosphorylate its known downstream targets ERK and AKT in lung mesenchymal cultures strongly suggests that FGF10 acts indirectly on the progenitor population via an epithelial intermediate. We provide support for a role of epithelial BMP4 in mediating the formation of parabronchial smooth muscle cells.  相似文献   

7.
The limb bud has a thickened epithelium at the dorsal-ventral boundary, the apical ectodermal ridge (AER), which sustains limb outgrowth and patterning. A secreted molecule fibroblast growth factor (FGF)10 is involved in inducing Fgf8 expression in the prospective AER and mutual interaction between mesenchymal FGF10 and FGF8 in the AER is essential for limb outgrowth. A secreted factor Wnt7a and a homeobox protein Lmx1 are involved in the dorsal patterning of the limb, whereas a homeobox protein Engrailed 1 (En1) is involved in the dorsal-ventral patterning as well as AER formation. Radical fringe (R-fng), a vertebrate homolog of Drosophila fringe was also found to elaborate AER formation in chicks. However, little is known about the molecular interactions between these factors during AER formation. The present study clarified the relationship between FGF10, Wnt7a, Lmx1, R-fng and En1 during limb development using a foil-barrier insertion experiment. It was found that a foil-barrier inserted into the chick prospective wing mesenchyme lateral to the mesonephric duct blocks AER induction. This experiment was expanded by implanting Fgf10-expressing cells lateral to the barrier and examined whether FGF10 could rescue the expression of the limb-patterning genes reported in AER formation. It was found that FGF10 is sufficient to induce Fgf8 expression in the ectoderm of the foil-inserted limb bud, concomitantly with R-fng and En1 expression. However, FGF10 could not rescue the expression of the dorsal marker genes, Wnt7a or Lmx1. Thus, it is suggested that epithelial factors of En1 and R-fng can induce Fgf8 expression in the limb ectoderm in cooperation with a mesenchymal factor FGF10. Some factor(s) other than FGF10, possibly from the paraxial structures medial to the limb mesoderm, is responsible for the initial dorsal-ventral specification of the limb bud.  相似文献   

8.
Fibroblast growth factor (FGF) signaling mediates reciprocal mesenchymal-epithelial cell interactions in the developing mouse lung and limb. In the gastrointestinal (GI) tract, FGF10 is expressed in the cecal mesenchyme and signals to an epithelial splice form of FGF receptor (FGFR) 2 to regulate epithelial budding. Here, we identify FGF9 as a reciprocal epithelial-mesenchymal signal required for cecal morphogenesis. Fgf9 null (Fgf9(-/-)) mouse embryos have agenesis of the embryonic cecum, lacking both mesenchymal expansion and an epithelial bud. In the cecal region of Fgf9(-/-) embryos, mesenchymal expression of Fgf10 and Bmp4 is notably absent, whereas the expression of epithelial markers, such as sonic hedgehog, is not affected. Using epithelial and whole explant cultures, we show that FGF9 signals to mesenchymal FGFRs and that FGF10 signals to epithelial FGFRs. Taken together, these data show that an epithelial FGF9 signal is necessary for the expansion of cecal mesenchyme and the expression of mesenchymal genes that are required for epithelial budding. Thus, these data add to our understanding of FGF-mediated reciprocal epithelial-mesenchymal signaling.  相似文献   

9.
The mouse develops five pairs of mammary glands that arise during mid-gestation from five pairs of placodes of ectodermal origin. We have investigated the molecular mechanisms of mammary placode development using Lef1 as a marker for the epithelial component of the placode, and mice deficient for Fgf10 or Fgfr2b, both of which fail to develop normal mammary glands. Mammary placode induction involves two different signaling pathways, a FGF10/FGFR2b-dependent pathway for placodes 1, 2, 3 and 5 and a FGF10/FGFR2b-independent pathway for placode 4. Our results also suggest that FGF signaling is involved in the maintenance of mammary bud 4, and that Fgf10 deficient epithelium can undergo branching morphogenesis into the mammary fat pad precursor.  相似文献   

10.
A major function of the limb bud apical ectodermal ridge (AER) is to produce fibroblast growth factors (FGFs) that signal to the underlying mesenchyme. Previous studies have suggested that of the four FGF genes specifically expressed in the mouse AER, Fgf8 is unique not only in its expression pattern, but also because it is the only such FGF gene that causes limb skeletal abnormalities when individually inactivated. However, when both Fgf8 and Fgf4 are simultaneously inactivated in the AER, the limb does not develop. One possible explanation for these observations is that although both of these FGF family members contribute to limb development, Fgf8 has functions that Fgf4 cannot perform. To test this hypothesis, we used a novel method to substitute Fgf4 for Fgf8 expression in the developing limb bud by concomitantly activating a conditional Fgf4 gain-of-function allele and inactivating an Fgf8 loss-of-function allele in the same cells via Cre-mediated recombination. Our data show that when Fgf4 is expressed in place of Fgf8, all of the skeletal defects caused by inactivation of Fgf8 are rescued, conclusively demonstrating that FGF4 can functionally replace FGF8 in limb skeletal development. We also show that the increase in FGF signaling that occurs when the Fgf4 gain-of-function allele is activated in a wild-type limb bud causes formation of a supernumerary posterior digit (postaxial polydactyly), as well as cutaneous syndactyly between all the digits. These data underscore the importance of controlling the level of FGF gene expression for normal limb development.  相似文献   

11.
Proximal-to-distal growth of the embryonic limbs requires Fgf10 in the mesenchyme to activate Fgf8 in the apical ectodermal ridge (AER), which in turn promotes mesenchymal outgrowth. We show here that the growth arrest specific gene 1 (Gas1) is required in the mesenchyme for the normal regulation of Fgf10/Fgf8. Gas1 mutant limbs have defects in the proliferation of the AER and the mesenchyme and develop with small autopods, missing phalanges and anterior digit syndactyly. At the molecular level, Fgf10 expression at the distal tip mesenchyme immediately underneath the AER is preferentially affected in the mutant limb, coinciding with the loss of Fgf8 expression in the AER. To test whether FGF10 deficiency is an underlying cause of the Gas1 mutant phenotype, we employed a limb culture system in conjunction with microinjection of recombinant proteins. In this system, FGF10 but not FGF8 protein injected into the mutant distal tip mesenchyme restores Fgf8 expression in the AER. Our data provide evidence that Gas1 acts to maintain high levels of FGF10 at the tip mesenchyme and support the proposal that Fgf10 expression in this region is crucial for maintaining Fgf8 expression in the AER.  相似文献   

12.
The molecular mechanisms underlying the development of the external genitalia in mammals have been very little examined. Recent gene knockout studies have suggested that the developmental processes of its anlage, the genital tubercle (GT), have much in common with those of limb buds. The Fgf genes have been postulated as regulating several downstream genes during organogenesis. Fgf8 was expressed in the distal urethral plate epithelium of the genital tubercle (GT) together with other markers such as the Msx1, Fgf10, Hoxd13 and Bmp4 expressed in the mesenchyme. To analyze the role of the FGF system during GT formation, an in vitro organ culture system was utilized. It is suggested that the distal urethral plate epithelium of GT, the Fgf8-expressing region, regulates the outgrowth of GT. Ectopic application of FGF8 beads to the murine GT induced mesenchymal gene expression, and also promoted the outgrowth of the GT. Experiments utilizing anti-FGF neutralizing antibody suggested a growth-promoting role for FGF protein(s) in GT outgrowth. In contrast, despite its vital role during limb-bud formation, Fgf10 appears not to be primarily essential for initial outgrowth of GT, as extrapolated from Fgf10(-/-) GTs. However, the abnormal external genitalia development of Fgf10(-/-) perinatal mice suggested the importance of Fgf10 in the development of the glans penis and the glans clitoridis. These results suggest that the FGF system is a key element in orchestrating GT development.  相似文献   

13.
Mammalian lung develops as an evagination of ventral gut endoderm into the underlying mesenchyme. Iterative epithelial branching, regulated by the surrounding mesenchyme, generates an elaborate network of airways from the initial lung bud. Fibroblast growth factors (FGFs) often mediate epithelial-mesenchymal interactions and mesenchymal Fgf10 is essential for epithelial branching in the developing lung. However, no FGF has been shown to regulate lung mesenchyme. In embryonic lung, Fgf9 is detected in airway epithelium and visceral pleura at E10.5, but is restricted to the pleura by E12.5. We report that mice homozygous for a targeted disruption of Fgf9 exhibit lung hypoplasia and early postnatal death. Fgf9(-/-) lungs exhibit reduced mesenchyme and decreased branching of airways, but show significant distal airspace formation and pneumocyte differentiation. Our results suggest that Fgf9 affects lung size by stimulating mesenchymal proliferation. The reduction in the amount of mesenchyme in Fgf9(-/-) lungs limits expression of mesenchymal Fgf10. We suggest a model whereby FGF9 signaling from the epithelium and reciprocal FGF10 signaling from the mesenchyme coordinately regulate epithelial airway branching and organ size during lung embryogenesis.  相似文献   

14.
15.
16.
FGF10 maintains stem cell compartment in developing mouse incisors   总被引:27,自引:0,他引:27  
Mouse incisors are regenerative tissues that grow continuously throughout life. The renewal of dental epithelium-producing enamel matrix and/or induction of dentin formation by mesenchymal cells is performed by stem cells that reside in cervical loop of the incisor apex. However, little is known about the mechanisms of stem cell compartment formation. Recently, a mouse incisor was used as a model to show that fibroblast growth factor (FGF) 10 regulates mitogenesis and fate decision of adult stem cells. To further illustrate the role of FGF10 in the formation of the stem cell compartment during tooth organogenesis, we have analyzed incisor development in Fgf10-deficient mice and have examined the effects of neutralizing anti-FGF10 antibody on the developing incisors in organ cultures. The incisor germs of FGF10-null mice proceeded to cap stage normally. However, at a later stage, the cervical loop was not formed. We found that the absence of the cervical loop was due to a divergence in Fgf10 and Fgf3 expression patterns at E16. Furthermore, we estimated the growth of dental epithelium from incisor explants of FGF10-null mice by organ culture. The dental epithelium of FGF10-null mice showed limited growth, although the epithelium of wild-type mice appeared to grow normally. In other experiments, a functional disorder of FGF10, caused by a neutralizing anti-FGF10 antibody, induced apoptosis in the cervical loop of developing mouse incisor cultures. However, recombinant human FGF10 protein rescued the cervical loop from apoptosis. Taken together, these results suggest that FGF10 is a survival factor that maintains the stem cell population in developing incisor germs.  相似文献   

17.
beta-Catenin is an essential molecule in Wnt/wingless signaling, which controls decisive steps in embryogenesis. To study the role of beta-catenin in skin development, we introduced a conditional mutation of the gene in the epidermis and hair follicles using Cre/loxP technology. When beta-catenin is mutated during embryogenesis, formation of placodes that generate hair follicles is blocked. We show that beta-catenin is required genetically downstream of tabby/downless and upstream of bmp and shh in placode formation. If beta-catenin is deleted after hair follicles have formed, hair is completely lost after the first hair cycle. Further analysis demonstrates that beta-catenin is essential for fate decisions of skin stem cells: in the absence of beta-catenin, stem cells fail to differentiate into follicular keratinocytes, but instead adopt an epidermal fate.  相似文献   

18.
Glycosaminoglycans (GAGs) play a central role in embryonic development by regulating the movement and signaling of morphogens. We have previously demonstrated that GAGs are the co-receptors for Fgf10 signaling in the lacrimal gland epithelium, but their function in the Fgf10-producing periocular mesenchyme is still poorly understood. In this study, we have generated a mesenchymal ablation of UDP-glucose dehydrogenase (Ugdh), an essential biosynthetic enzyme for GAGs. Although Fgf10 RNA is expressed normally in the periocular mesenchyme, Ugdh mutation leads to excessive dispersion of Fgf10 protein, which fails to elicit an FGF signaling response or budding morphogenesis in the presumptive lacrimal gland epithelium. This is supported by genetic rescue experiments in which the Ugdh lacrimal gland defect is ameliorated by constitutive Ras activation in the epithelium but not in the mesenchyme. We further show that lacrimal gland development requires the mesenchymal expression of the heparan sulfate N-sulfation genes Ndst1 and Ndst2 but not the 6-O and 2-O-sulfation genes Hs6st1, Hs6st2 and Hs2st. Taken together, these results demonstrate that mesenchymal GAG controls lacrimal gland induction by restricting the diffusion of Fgf10.  相似文献   

19.
The key role played by Fgf10 during early lung development is clearly illustrated in Fgf10 knockout mice, which exhibit lung agenesis. However, Fgf10 is continuously expressed throughout lung development suggesting extended as well as additional roles for FGF10 at later stages of lung organogenesis. We previously reported that the enhancer trap Mlcv1v-nLacZ-24 transgenic mouse strain functions as a reporter for Fgf10 expression and displays decreased endogenous Fgf10 expression. In this paper, we have generated an allelic series to determine the impact of Fgf10 dosage on lung development. We report that 80% of the newborn Fgf10 hypomorphic mice die within 24 h of birth due to respiratory failure. These mutant mouse lungs display severe hypoplasia, dilation of the distal airways and large hemorrhagic areas. Epithelial differentiation and proliferation studies indicate a specific decrease in TTF1 and SP-B expressing cells correlating with reduced epithelial cell proliferation and associated with a decrease in activation of the canonical Wnt signaling in the epithelium. Analysis of vascular development shows a reduction in PECAM expression at E14.5, which is associated with a simplification of the vascular tree at E18.5. We also show a decrease in α-SMA expression in the respiratory airway suggesting defective smooth muscle cell formation. At the molecular level, these defects are associated with decrease in Vegfa and Pdgfa expression likely resulting from the decrease of the epithelial/mesenchymal ratio in the Fgf10 hypomorphic lungs. Thus, our results indicate that FGF10 plays a pivotal role in maintaining epithelial progenitor cell proliferation as well as coordinating alveolar smooth muscle cell formation and vascular development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号