首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The binding site of the extrinsic protein PsbP in plant photosystem II was mapped by pulsed electron-electron double resonance, using mutant spinach PsbP (Pro20Cys, Ser82Cys, Ala111Cys, and Ala186Cys) labeled with 4-maleimido-TEMPO (MSL) spin label. The distances between the spin label and the Tyr160 neutral radical (YD) in PsbD, the D2 subunit of plant photosystem II, were 50.8?±?3.5?Å, 54.9?±?4.0?Å, 57.8?±?4.9?Å, and 58.4?±?14.1?Å, respectively. The geometry inferred from these distances was fitted to the PsbP crystal structure (PDB: 4RTI) to obtain the coordinates of YD relative to PsbP. These coordinates were then fitted under boundary conditions to the structure of cyanobacterial photosystem II (PDB: 4UB6), by rotating on Euler angles centered at fixed YD coordinates. The result proposed two models which show possible acidic amino acid residues in CP43, CP47 and D2 that can bind the basic amino acids Arg48, Lys143, and Lys160 in PsbP.  相似文献   

2.
A 20-membered cyclic peptide disulfide has been synthesized as a conformational model for disulfide loops of limited ring size. 1H-nmr studies at 270 MHz establish the presence of three intramolecular hydrogen bonds involving the Leu, Val, and methylamide NH groups in CDCl3. Evidence for peptide aggregation in CDCl3 is also presented. A structural transition involving loosening of the hydrogen bond formed by the Val NH group is observed upon the measured addition of (CD3)2SO to CDCl3. Hydrogen-bonding studies, together with unusually low field positions of the Cys(1) and Cys(6) CαH resonances and high J values provide support for an intramolecular antiparallel β-sheet conformation, facilitated by a chain reversal at the Aib-Ala segment. Extensive nuclear Overhauser effect studies provide compelling evidence for the proposed conformation and also establish a type I′ β-turn at the Aib-Ala residues, the site of the chain reversal.  相似文献   

3.
4.
Os3(CO)10(MeCN)2 reacts at room temperature in MeCN or toluene with R-Pyca2 to yield two isomers of Os3(CO)10(R-Pyca) that differ in the bonding of the R-Pyca ligand to the Os3(CO)10 unit. In all cases Os3(CO)10(R-Pyca(4e)) (isomer A; 4a: R = c-Pr, 4b: R = i-Pr, 4c: R = neo-Pent, 4d: R = t-Bu), containing a chelating 4e donating R-Pyca ligand and three OsS bonds, could be isolated. In the case of R = c-Pr and R = i-Pr Os3(CO)10(R-Pyca(6e)) (isomer B; 5a: R = c-Pr, 5b: R = i-Pr), in which only two OsS bonds are present and the R-Pyca ligand is bonded as a 6e donating ligand bridging two non-bonded Os atoms, could be isolated as a minor product.At 70 °C Os3(CO)10(R-Pyca(4e)) (4b and 4d) loses one carbonyl and the pyridine moiety of the R-Pyca ligand is ortho-metallated to form HOs3(C5H3N-2-C(H)NR)(CO)9 (6b: R = i-Pr and 6d: R = t-Bu). Under the same conditions Os3(CO)10(i-Pr-Pyca(6e)) (5b) reacts to Os2(CO)6(6e)) (7b) containing a bridging 6e donating ligands. The latter two reactions were followed with FT-IR spectroscopy in a high temperature IR cell.The structure of the complexes in solution have been studied by 1H and 1C NMR and IR spectroscopy. The stoichiometries of 4a and 5a were determined by FAB-mass spectrometry while an exact mass determination was carried out for 4a.The crystal structure of 6b has been determined. Crystal of 6b are monoclinic, space group P21/n, with a = 7.808(2),b = 17.613(3),c = 16.400(8)Å, β = 94.09(3)° and Z = 4. The structure was refined to R = 0.039. The molecule contains a triangular array of osmium atoms [Os(1)Os(2) = 2.898(2)Å, Os(1)Os(3) = 2.886(2)Åand Os(2)O(3) = 2.911(2)Å] and nine terminally bonded carbonyl ligands. The C5H3N-2-C(H)N-i-Pr ligand is chelate bonded to Os(2) with the pyridine and imine nitrogens atoms axially and equatorially coordinated respectively [Os(2)N(1) = 2.00(2)Åand Os(2)N(2) = 2.11(2)Å]. The i-Pr-Pyca ligand is ortho-metallated at C(1) and forms a four membered ring containing Os(2), Os(3), C(1) and N(1), the Os(3)C(1) distance being 2.12(2)Å. The hydride, which could not be located unequivocally from a difference Fourier map is proposed to bridge the Os(2)(3) bond on the basis of stereochemical considerations.  相似文献   

5.
Treatment of a mixture of Cys(R)(O) and Cys(R) with an acid was found to generate cystine in fairly good yields, when suitable R, R, and an acid were selected. An unsymmetrical cystine peptide was prepared by treatment of a mixture of Z(OMe)-Cys(R) (0)-Ala-NH2 (R=Acm or MBzl) and Z(OMe)-Cys(MBzl)-Gly-OBzl with TFA or 1 M TFMSA/TFA.3 Oxytocin was obtained in an excellent yield by TFA treatment of the protected peptide containing Cys(Acm)(0) and Cys(MBzl). Thus, formation of the disulfide bond was found feasible at the position of Cys(R) (0).The following abbreviations are used Boc t-butyloxycarbonyl - Z(OMe) p-methoxybenzyloxycarbonyl - MBzl p-methoxybenzyl - Acm acetamidomethyl - Bzl benzyl - Ad l-adamantyl - tBu t-butyl - TFA trifluoroacetic acid - TFMSA trifluoromethanesulfonic acid - TMSOTf trimethylsilyl trifluoromethane sulfonate  相似文献   

6.
7.
8.
Summary A series of phosphopeptides Tyr(PO3H2)-Val-Pro-Xxx-Leu (Xxx=Met, Met(O), Nle, Dab or Cys), derived from the native platelet-derived growth factor- receptor (PDGF-) sequence, has been prepared to study their interaction with the src-homology 2 (SH2) domains of the p85 subunit of PI3 kinase. The phosphopeptides were synthesized using Fmoc methodology incorporating N-Boc dibenzyl-protected phosphotyrosine (Boc-Tyr[PO3(Bzl)2]) as the N-terminal amino acid, since the benzyl groups can be removed during resin cleavage with TFA. Only peptides containing methionine were found to exist partially as S-benzyl sulfonium salts after TFA cleavage from the resin. The desired peptide could be obtained from the S-benzyl sulfonium salt by hydrogenolysis.  相似文献   

9.
10.
11.
12.
The crystal structure of a dipeptide L -leucyl–L -leucine (C12H24N2O3) has been determined. The crystals are monoclinic, space group P21, with a = 5.434(4) Å, b = 15.712(7) Å, c = 11.275(2) Å, β = 100.41(1)°, and Z = 2. The crystals contain one molecule of dimethyl sulfoxide (DMSO) as solvent of crystallization for each dipeptide molecule. The structure has been solved by direct methods and refined to a final R index of 0.059 for 920 reflections (sinθ/λ ? 0.60 Å?1) with I ? 2σ (I). The trans peptide unit shows substantial degree of non-planarity (Δω = 14°). The peptide backbone adopts an extended conformation with torsion angles of ψ1 = 138(1)°, ω1 = 166(1)°, ?2 = ? 149.3(7)°, ψ21 = 164.2(7)°, and ψ22 = ? 15(1)°. For the first leucyl residue, the side-chain conformation is specified by the torsion angles 1χ1 = 176.7(7)°, 1χ21 = 62(1)°, 1χ22 = ? 177.4(8)°; the second leucyl residue adopts a Sterically unfavorable conformation with 2χ1 = 61(1)°, 2χ21 = 97(1)°, and 2χ22 = ?151(1)°. The packing involves head-to-tail interaction of peptide molecules and segregation of polar and nonpolar regions. The DMSO molecule is strongly hydrogen bonded to the terminal NH group. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号