首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human plasma apoproteins apoA-I and apoC-I enhanced the activity of partially purified lecithin: cholesterol acyltransferase five to tenfold with chemically defined phosphatidylcholine:cholesterol single bilayer vesicles as substrates. By contrast, apoproteins apoA-II, apoC-II, and apoC-III did not give any enhancement of enzyme activity. The activation by apoA-I and apoC-I differed, depending upon the nature of the hydrocarbon chains of phosphatidylcholine acyl donor. ApoA-I was most effective with a phosphatidylcholine containing an unsaturated fatty acyl chain. ApoC-I activated LCAT to the same extent with both saturated and unsaturated phosphatidylcholine substrates. Two of the four peptides obtained by cyanogen bromide cleavage of apoA-I retained some ability to activate LCAT. The efficacy of each of these peptides was approximately 25% that of the whole protein. Cyanogen bromide fragments of apoC-I were inactive. The apoproteins from HDL, HDL2, and HDL3, at low protein concentrations, were equally effective as activators of LCATand less effective than apoA-I. Higher concentrations of apoHDL, apoHDL2, and apoHDL3 inhibited LCAT activity. ApoC and apoA-II were both found to inhibit the activation of LCAT by apoA-I. The inhibition of LCAT by higher concentrations of apoHDL was not correlated with the aopA-II and apoC content.  相似文献   

2.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27 degrees C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1, or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 X 55 A. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

3.
The monolayer system was employed to investigate the relative affinities of apolipoproteins A-I and A-II for the lipid/water interface. The adsorption of reductively 14C-methylated apolipoproteins to phospholipid monolayers spread at the air/water interface was determined by monitoring the surface pressure of the mixed monolayer and the surface concentration of the apoprotein. ApoA-II has a higher affinity than apoA-I for lipid monolayers; for a given initial surface pressure, apoA-II adsorbs more than apoA-I to monolayers of egg phosphatidylcholine (PC), distearoyl-PC and human high-density lipoprotein (HDL3) surface lipids. Comparison of the molecular packing of apolipoproteins A-I and A-II suggests that apoA-II adopts a more condensed conformation at the lipid/water interface compared to apoA-I. The ability of apoA-II to displace apoA-I from egg PC and HDL3 surface lipid monolayers was studied by following the adsorption and desorption of the reductively 14C-methylated apolipoproteins. At saturating subphase concentrations of the apoproteins (3.10(-5) g/100 ml), two molecules of apoA-II absorbed for each molecule of apoA-I displaced. This displacement was accompanied by an increase in surface pressure. An identical stoichiometry for the displacement of apoA-I from HDL particles by apoA-II has been reported by others. At low subphase concentrations of apoproteins (5.10(-6) g/100 ml), the apoA-I/lipid monolayer was not fully compressed and could accommodate the adsorbing apoA-II molecules without displacement of apoA-I molecules. ApoA-I molecules were unable to displace apoA-II from the lipid/water interface. The average residue hydrophobicity of apoA-II is higher than that of apoA-I; this may contribute to the higher affinity of apoA-II for lipids compared to apoA-I. The probable helical regions in apolipoproteins A-I and A-II were located using a secondary structure prediction algorithm. The analysis suggests that the amphiphilic properties of the alpha-helical regions of apoA-I and apoA-II are probably not significantly different. Further understanding of the differences in surface activity of these apolipoproteins will require more knowledge of their secondary and tertiary structures.  相似文献   

4.
Cell biology methods have greatly influenced the elucidation of the biosynthetic pathways of apolipoproteins. In vitro and tissue culture systems allow the study, to a large extent, of the process of synthesis, intracellular processing, secretion, and extracellular processing of the major high density lipoprotein apoproteins apoA-I and A-II and also of a minor component, apoA-IV. Whereas the latter apoprotein is equipped only with a signal sequence, the primary translation products of apoA-I and apoA-II carry N-terminal extensions of preprosequence of 24 amino acids for apoA-I and 23 amino acid residues for apoA-II. The pro-form of apoA-I characterized by a hexapeptide extension is completely stable intracellularly and is secreted as such. The pro-form is further processed by a serum protease specific for an unusual -Gln-Gln-Asp-Glu-sequence site. Pro-apoA-II, a pentapeptide sequence, is partially processed intracellularly to its mature form and secreted together with the residual pro-form. The cleavage site of pro-apoA-II is characterized by two basic amino acid residues Arg-Arg, present also in other known pro-proteins. The biological function of the N-terminal pro-sequences and details of their final processing by the serum protease(s) have yet to be established.  相似文献   

5.
To examine the effect of incorporation of cholesterol into high density lipoprotein (HDL) recombinants, multilamellar liposomes of 3H cholesterol/14C dimyristoyl phosphatidylcholine were incubated with the total apoprotein (apoHDL) and principal apoproteins (apoA-1 and apoA-2) of human plasma high density lipoprotein. Soluble recombinants were separated from unreacted liposomes by centrifugation and examined by differential scanning calorimetry and negative stain electron microscopy. At 27°C, liposomes containing up to approx. 0.1 mol cholesterol/mol dimyristoyl phosphatidylcholine (DMPC) were readily solubilized by apoHDL, apoA-1 or apoA-2. However, the incorporation of DMPC and apoprotein into lipoprotein complexes was markedly reduced when liposomes containing a higher proportion of cholesterol were used. For recombinants prepared from apoHDL, apoA-1 or apoA-2, the equilibrium cholesterol content of complexes was approx. 45% that of the unreacted liposomes. Electron microscopy showed that for all cholesterol concentrations, HDL recombinants were predominantly lipid bilayer discs, approx. 160 × 55 A?. Differential scanning calorimetry of cholesterol containing recombinants of DMPC/cholesterol/apoHDL or DMPC/cholesterol/apoA-1 showed, with increasing cholesterol content, a linear decrease in the enthalpy of the DMPC gel to liquid crystalline transition, extrapolating to zero enthalpy at 0.15 cholesterol/DMPC. The enthalpy values were markedly reduced compared to control liposomes, where the phospholipid transition extrapolated to zero enthalpy at approx. 0.45 cholesterol/DMPC. The calorimetric and solubility studies suggest that in high density lipoprotein recombinants cholesterol is excluded from 55% of DMPC molecules bound in a non-melting state by apoprotein.  相似文献   

6.
To understand the structure of apolipoprotein A-I, we have used an immunochemical approach and identified specific regions of apoA-I that may be exposed on the apoprotein as it exists on high density lipoprotein (HDL). Twelve mouse monoclonal antibodies specific for human apoA-I were generated from six fusions. Thirteen synthetic peptides of between 5 and 16 amino acid residues in length, which span the amino-terminal two-thirds of apoA-I, were tested for their ability to react with each of the 12 antibodies. In a competitive solid-phase radioimmunoassay, a synthetic peptide, which represented residues 1-15 of mature apoA-I, inhibited the binding of antibody AI-16 to immobilized HDL. Similarly, a synthetic peptide, which represented residues 90-105 of apoA-I, inhibited the binding of antibody AI-18 to immobilized HDL. Using systematic changes in the size and sequence of the oligopeptides, the limits and essential amino acid residues of these epitopes were defined. Comparisons of the slopes of the competition curves obtained with immunoreactive peptides, isolated apoA-I, and HDL verified that these two regions of apoA-I are exposed on the surface of apoA-I as it exists on native HDL.  相似文献   

7.
The effects of human plasma lipoprotein-proteins on the removal of cellular lipids from Landschütz ascites cells were studied. Cellular lipids were labeled by injecting mice previously injected with ascites with either [3H]cholesterol or [3H]choline. Apoproteins from very low density (apoC-I, C-II, and C-111) and high density (apoA-I and A-II) lipoproteins were used. Each of the apoproteins alone was ineffective in removing cellular [3H]cholesterol. However, when synthetic phosphatidylcholines of known composition were added to each apoprotein and the experiments were repeated using either apoprotein-lipid mixtures or ultracentrifugally isolated complexes, the removal of sterol was considerably enhanced. Complexes of saturated phosphatidylcholines with apoA-II, apoC-I, or apoC-III were the most effective in releasing cellular sterol. Apoprotein-phospholipid complexes were much less effective in removing cellular [3H]phosphatidylcholine than the free apoproteins; apoA-I and apoC-I were the best of the five apoproteins studied. When a comparison was made of the adsorption of iodinated apoproteins to ascites cells, 3 to 4 times more apoA-II and apoC-III were bound than apoA-I. The binding of apoproteins was time and temperature dependent. Approximately 50% of the radioactivity that remained in the washed cells was removed with trypsin. To determine if the counts remaining in the trypsin-treated cells were internalized, identical experiments were performed using human erythrocytes, cells that do not exhibit pinocytosis. Again, approximately 50% of the radioactivity of the iodinated apoproteins was not released by trypsin. Succinylation of apoA-II not only destroys its phospholipid-binding properties but also its adsorption to red cells. These results suggest that the plasma apoproteins differ in their ability to remove cellular lipids and bind to both ascites and red cell membranes, and possibly to specific phospholipids, in such a way that only a part of the apoprotein is degraded with proteases.  相似文献   

8.
This study was designed to identify a method for the measurement of human high density lipoprotein subfraction (HDL2 and HDL3) metabolism. Apolipoproteins A-I, A-II, and C, the major HDL apoproteins, were radioiodinated and incorporated individually into HDL2 and HDL3 in vitro. Using a double label technique, the turnover of apoA-I in HDL2 and HDL3 was measured simultaneously in a normal male. The apoprotein exchanged rapidly between the two subfractions, evidenced by equilibration of their apoA-I specific activity. Radiolabeled apoA-II, incorporated into the subfractions, showed a similar exchange in vitro. Incubation of 131I-labeled very low density lipoproteins (VLDL) with HDL or its subfractions resulted in transfer of C proteins from VLDL to the HDL moiety. The extent of transfer was dependent on the HDL subfraction present; 50% of the VLDL apoC was transferred to HDL3, while the transfer to total HDL and HDL2 was 69% and 78%, respectively. ApoC also exchanged between HDL2 and HDL3, again showing a preference for the former and suggesting a primary metabolic relationship between VLDL and HDL2. Overall, the study indicates that apoA-I, apoA-II, and the C proteins exist in equilibrium between HDL2 and HDL3. This phenomenon precludes their use as probes for HDL subfraction metabolism in humans.  相似文献   

9.
The interaction of synthetic dimyristoyl phosphatidylcholine (lecithin) liposomes with isolated apoC-I and apoC-III proteins from very low density lipoproteins has been studied by microcalorimetry. Complex formation is a highly exothermal process characterized by a maximal enthalpy of -130 kcal/mol (-544 kJ) apoC-III-1 and -65 kcal/mol apoC-I proteins (-272 kJ). The complex composition determined after its isolation by ultracentrifugal flotation agrees with the value derived from the enthalpy binding curves. The binding of a constant amount of dimyristoyl lecithin to apoprotein mixtures containing various proportions of apoA-I and apoC-III failed to demonstrate the existence of any preferential association between the two apoproteins, in contrast with results obtained previously with apoA-I/apoA-II protein mixtures. Finally the various contributions to the enthalpy of binding such as that arising from an increase in apoprotein helicity have been evaluated. A classification of the apolipoproteins according to their lipid-binding affinity is proposed as: apoA-II congruent to apoC-III greater than apoC-I greater than apoA-I proteins.  相似文献   

10.
High density lipoprotein (HDL) from human serum was subfractionated into HDL2 and HDL3 by rate-zonal density gradient ultracentrifugation. The orientation of apoproteins (apo) A-I and A-II in these subfractions was investigated by use of the photosensitive glycolipid probes, 2-(4-azido-2-nitrophenoxy)-palmitoyl[1-14C]glucosamine (compound A) and 12-(4-azido-2-nitrophenoxy)-stearoyl[1-14C]glucosamine (compound B). Both probes were added to the HDL-structures in a ratio of two or three probe molecules per particle and were photoactivated by irradiation at a wavelength above 340 nm. After delipidation the probe-apoprotein adducts were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both the "shallow" probe (compound A) and the "depth" probe (compound B) were coupled for 10-14% (of the label added) to apoA-I and apoA-II from HDL3 and for about 6% to apoA-I and apoA-II from HDL2. By taking into account the relative amounts of apoA-I and apoA-II, it was estimated that the "shallow" probe labeled apoA-I 40% more effectively than apoA-II in both HDL2 and HDL3; the "depth" probe labeled apoA-I and apoA-II equally well in both subfractions. The data suggest that towards the surface HDL2 and HDL3 contain a relatively larger portion of apoA-I than apoA-II, whilst towards the core both subfractions are occupied by an equal portion of apoA-I and apoA-II. Application of these photolabels has failed to point out differences in the structural organization of HDL2 and HDL3.  相似文献   

11.
Eight stable murine monoclonal antibodies (mabs) were raised against human high-density lipoproteins (HDL). Three different antibody reactivities were demonstrated by immunoblotting. A group of five antibodies were specific for apolipoprotein A-I (apoA-I) and bound to similar or overlapping epitopes. The second type of reactivity, shown by mab-32, was specific for apoA-II. In the third group, two antibodies showed high reactivity with apoA-II and slight cross-reactivity with apoA-I. The properties of two antibodies, mab M-30 specific for apoA-I and mab M-32 specific for apoAII, were characterized in detail as probes of HDL structure. The association of 125I-labeled HDL or synthetic complexes of apoA-I and phosphatidylcholine with mab M-30 was lipid dependent. Mab M-32 binding to apoA-II was independent of lipid. The lipid-dependent epitope bound by mab M-30 has been localized to an 18 amino acid synthetic apoA-I peptide. Moreover, studies with HDL2, HDL3, and immunoadsorbed HDL subfractions indicate that binding of mab M-30 to HDL is influenced by some component within the microenvironment individual HDL particles. These lines of evidence suggest that the molar ratio of apoA-I to apoA-II is the critical determinant. Binding of mab M-32 to HDL increased the reactivity of HDL to mab M-30 in a dose-dependent manner, indicating an unusual form of cooperativity between two mabs that recognize different proteins in HDL. These monoclonal antibodies will be valuable in studies of the metabolic significance of protein-protein and lipid-protein interactions in HDL.  相似文献   

12.
Denaturation of human plasma high density lipoproteins during ultracentrifugation in guanidine-HCl is characterized by: dissociation of apoA-I, in the range of 2-3 M guanidine-HCl, and dissociation of apoA-I and apoA-II in 5-6 M guanidine-HCl. Denaturation of high density lipoprotein species, during a sequence of timed exposure to guanidine-HCl followed first by removal of the denaturant by dialysis and then by ultracentrifugation, is characterized by:dissociation of lipid-poor apoA-I, which follows a time course similar to denaturation-related changes in reported spectroscopic parameters; and apparent formation of lipoprotein aggregation products depleted in apoA-I and relatively enriched in apoA-II. These studies indicate differential properties of the major apoproteins in stabilizing high density lipoprotein structure and characterize a mode of lipoprotein transformation and degradation which apparently results from apoprotein dissociation coupled with aggregation of denatured lipoprote species.  相似文献   

13.
Isolated livers from rhesus monkeys (Macaca mulatta) were perfused in order to asses the nature of newly synthesized hepatic lipoprotein. Perfusate containing [3H]leucine was recirculated for 1.5 hr, followed by an additional 2.5-hr perfusion with fresh perfusate. Equilibrium density gradient ultracentrifugation clearly separated VLDL from LDL. The apoprotein composition of VLDL secreted by the liver was similar to that of serum VLDL. The perfusate LDL contained some poorly radiolabeled, apoB-rich material, which appeared to be contaminating serum LDL. There was also some material of an LDL-like density, which was rich in radiolabeled apoE. Rate zonal density gradient ultracentrifugation fractionated HDL. All perfusate HDL fractions had a decreased cholesteryl ester/unesterified cholesterol ratio, compared to serum HDL. Serum HDL distributed in one symmetric peak near the middle of the gradient, with coincident peaks of apoA-I and apoA-II. The least dense fractions of the perfusate gradient were rich in radiolabeled apoE. The middle of the perfusate gradient contained particles rich in radiolabeled apoA-I and apoA-II. The peak of apoA-I was offset from the apoA-II peak towards the denser end of the gradient. The dense end of the HDL gradient contained lipoprotein-free apoA-I, apoE, and small amounts of apoA-II, probably resulting from the relative instability of nascent lipoprotein compared to serum lipoprotein. Perfusate HDL apoA-I isoforms were more basic than serum apoA-I isoforms. Preliminary experiments, using noncentrifugal methods, suggest that some hepatic apoA-I is secreted in a lipoprotein-free form. In conclusion, the isolated rhesus monkey liver produces VLDL similar to serum VLDL, but produces LDL and HDL which differ in several important aspects from serum LDL and HDL.  相似文献   

14.
The influence of apolipoprotein A-II (apoA-II) molecular structure on the capacity of high density lipoproteins (HDL) to promote cellular cholesterol efflux was investigated in cultured mouse peritoneal macrophages (MPM). Conversion by reduction and carboxamidomethylation of the naturally occurring dimeric apoA-II to its monomeric form in both native or reconstituted HDL did not change apolipoprotein secondary structure and lipoprotein size/composition. All particles containing monomeric apoA-II, i.e., native HDL3 or reconstituted HDL with or without apoA-I, showed a higher ability to promote cholesterol efflux originating from plasma membrane and intracellular stores, compared to particles containing dimeric apoA-II. These findings indicate that apolipoprotein molecular structure is a major determinant of HDL capacity to promote cholesterol efflux from cells.  相似文献   

15.
Atherosclerosis is a state of heightened oxidative stress. Oxidized LDL is present in atherosclerotic lesions and used as marker for coronary artery disease, although in human lesions lipids associated with HDL are as oxidized as those of LDL. Here we investigated specific changes occurring to apolipoprotein A-I (apoA-I) and apoA-II, as isolated HDL and human plasma undergo mild, chemically induced oxidation, or autoxidation. During such oxidation, Met residues in apoA-I and apoA-II become selectively and consecutively oxidized to their respective Met sulfoxide (MetO) forms that can be separated by HPLC. Placing plasma at -20 degrees C prevents autoxidation, whereas metal chelators and butylated hydroxytoluene offer partial protection. Independent of the oxidation conditions, apoA-I and apoA-II (dimer) with two MetO residues accumulate as relatively stable oxidation products. Compared to controls, serum samples from subjects with the endothelial cell nitric oxide synthase a/b genotype that is associated with increased coronary artery disease contain increased concentrations of apoA-I with two MetO residues. Our results show that during the early stages, oxidation of HDL gives rise to specifically oxidized forms of apoA-I and apoA-II, some of which may be useful markers of in vivo HDL oxidation, and hence potentially atherosclerosis.  相似文献   

16.
The African trypanosome, Trypanosoma brucei brucei causes a fatal wasting disease in livestock but does not ordinarily infect humans, apparently because this unicellular parasite is lysed by high density lipoproteins (HDL) in human serum. To assess whether there is a specific active constituent in trypanolytic HDL, we have systematically compared the cytotoxic action on T.b.brucei in vitro of native and delipidated HDL, and of individual apolipoproteins, from nonpermissive hosts (human and baboon) with their counterparts from susceptible hosts (cattle and sheep). When suspensions of trypanosomes were incubated for 2 h at 37 degrees C with human or baboon plasma most cells were lysed, but not with bovine or sheep plasma. Similarly, HDL isolated from human and baboon plasma were trypanolytic (typically about 95% and 60% lysis, respectively, at 1 mg protein/ml), whereas bovine and sheep HDL were benign (less than 8% lysis). Subfractionation of human HDL by serial isopycnic ultracentrifugation and by heparin-Sepharose affinity chromatography established that the denser and smaller particles had greater trypanolytic activity both in vitro and in vivo. When human HDL was delipidated, the trypanocidal activity was associated with the water-soluble protein (apolipoprotein) fraction and not with the lipid constituents. Bovine apolipoproteins were also weakly trypanolytic in free solution (20-40% lysis), but not when complexed with cholesterol-phospholipid liposomes (less than 10% lysis). The major apolipoprotein of human HDL, apolipoprotein (apo) A-I had full trypanolytic activity (89-95% lysis at 1 mg protein/ml) when purified, whether in solution or incorporated into liposomes, but other apolipoproteins isolated from human HDL, including apoA-II, apoC, and apoE, were nontrypanolytic. Purified baboon apoA-I was also trypanolytic, though less potent than human apoA-I, but apoA-I from permissive hosts (cattle and sheep) was inactive when presented in liposomes. Incubation of bovine or sheep HDL with purified human apoA-I, and subsequent separation of the HDL by ultracentrifugation, produced chimeric HDL containing significant amounts of the human apolipoprotein; these particles showed appreciable trypanolytic activity. By contrast, human HDL particles in which about 70% of the apoA-I had been displaced with apoA-II had markedly reduced lytic properties compared to the native HDL (30% versus 80% lysis at 0.6 mg total protein/ml). We tentatively conclude that the trypanolytic activity of native human or baboon plasma resides in the apoA-I content of the HDL particles and that, conversely, bovine and sheep plasma are inactive because the apoA-I polypeptide present in their HDL lacks trypanocidal activity.  相似文献   

17.
Apolipoproteins A-I and A-II comprise approximately 70 and 20%, respectively, of the total protein content of HDL. Evidence suggests that apoA-I plays a central role in determining the structure and plasma concentration of HDL, while the role of apoA-II is uncertain. To help define the function of apoA-II and determine what effect increasing its plasma concentration has on HDL, transgenic mice expressing human apoA-II and both human apoA-I and human apoA-II were produced. Human apoA-II mRNA is expressed exclusively in the livers of transgenic animals, and the protein exists as a dimer as it does in humans. High level expression of human apoA-II did not increase HDL concentrations or decrease plasma concentrations of murine apoA-I and apoA-II in contrast to what was observed in mice overexpressing human apoA-I. The primary effect of overexpressing human apoA-II was the appearance of small HDL particles composed exclusively of human apoA-II. HDL from mice transgenic for both human apoA-I and human apoA-II displayed a unique size distribution when compared with either apoA-I or apoA-II transgenic mice and contain particles with both these human apolipoproteins. These results in mice, indicating that human apoA-II participates in determining HDL size, parallel results from human studies.  相似文献   

18.
High density lipoproteins (HDL) are heterogeneous particles consisting of about equal amounts of lipid and protein that are thought to mediate the transport of cholesterol from peripheral tissues to liver. We show that a previously identified polymorphism affecting HDL electrophoretic mobility in mice is due to a monogenic variation controlling HDL size and apolipoprotein composition. Thus, the HDL particles of various inbred strains of mice exhibit a striking difference in the ratio fo the two major apolipoproteins of HDL, apoA-I and apoA-II. HDL particles in all strains examined contain an average of about five apoA-I molecules; however, whereas the strains with small HDL contain two to three apoA-II molecules per particle, the strains with large HDL contain about five apoA-II molecules per particle. This increase in the protein content of the large HDL is also accompanied by increased lipid content. The HDL size polymorphism and apoA-II levels cosegregate with the apoA-II structural gene on mouse chromosome 1, indicating that a mutation of the apoA-II gene locus is responsible. The rates of synthesis of apoA-II are increased in the strains with large HDL and high apoA-II levels as compared to the strains with small HDL and low apoA-II levels. On the other hand, the fractional catabolic rates of both apoA-I and apoA-II among the strains are very similar, confirming that apoA-II concentrations are controlled at the level of synthesis. Despite the difference in rates of apoA-II synthesis between strains, the apoA-II mRNA levels in the strains are not discernibly different, suggesting that a mutation of the apoA-II structural gene controls apoA-II translational efficiency. This was confirmed by translating apoA-II mRNA in vitro using a rabbit reticulocyte lysate system. Sequencing of apoA-II cDNA from the strains revealed a number of nucleotide substitutions, which may affect translational efficiency. We conclude that the assembly of apoA-II into HDL does not have a set stoichiometry but, rather, is controlled by the production of apoA-II. As apoA-II levels increase, the HDL particles become larger and acquire more lipid, but apoA-I content per particle remains unchanged. These studies with mice provide a model for the metabolic relationships between apoA-I, apoA-II, and HDL lipid in humans.  相似文献   

19.
Nucleotide sequence of cloned cDNA of human apolipoprotein A-I.   总被引:6,自引:3,他引:3       下载免费PDF全文
P Cheung  L Chan 《Nucleic acids research》1983,11(11):3703-3715
ApoA-I is the major human HDL apoprotein. By oligonucleotide hybridization, we have isolated 5 dscDNA clones to human hepatic apo A-I mRNA. One of these clones (pA1-3) was completely sequenced. It has 878 bp plus a poly A tail of 48 and includes all the coding and 3'-untranslated regions of the mRNA and part of the 5'-untranslated region. It predicts a peptide sequence of 267 amino acids (including the 24 amino acid prepropeptides) which is very similar to the sequence reported by Brewer et al., (1978) Biochem. Biophys. Res. Commun. 80:623-630. The predicted signal peptide sequence is highly homologous to the rat apoA-I signal peptide. There is no evidence for any internally repeated segments in apoA-I either at the amino acid or at the DNA level. Using pA1-3 as a probe, we have detected on Northern gels apo A-I mRNA sequences of approximately 1100 nucleotides in human hepatic and baboon hepatic and intestinal RNAs, but not in RNAs from baboon skeletal muscle, kidney or spleen. The demonstration of apo A-I mRNA sequences in specific organs is important to our concept of "reverse cholesterol transport".  相似文献   

20.
Human plasma HDLs are classified on the basis of apolipoprotein composition into those that contain apolipoprotein A-I (apoA-I) without apoA-II [(A-I)HDL] and those containing apoA-I and apoA-II [(A-I/A-II)HDL]. ApoA-I enters the plasma as a component of discoidal particles, which are remodeled into spherical (A-I)HDL by LCAT. ApoA-II is secreted into the plasma either in the lipid-free form or as a component of discoidal high density lipoproteins containing apoA-II without apoA-I [(A-II)HDL]. As discoidal (A-II)HDL are poor substrates for LCAT, they are not converted into spherical (A-II)HDL. This study investigates the fate of apoA-II when it enters the plasma. Lipid-free apoA-II and apoA-II-containing discoidal reconstituted HDL [(A-II)rHDL] were injected intravenously into New Zealand White rabbits, a species that is deficient in apoA-II. In both cases, the apoA-II was rapidly and quantitatively incorporated into spherical (A-I)HDL to form spherical (A-I/A-II)HDL. These particles were comparable in size and composition to the (A-I/A-II)HDL in human plasma. Injection of lipid-free apoA-II and discoidal (A-II)rHDL was also accompanied by triglyceride enrichment of the endogenous (A-I)HDL and VLDL as well as the newly formed (A-I/A-II)HDL. We conclude that, irrespective of the form in which apoA-II enters the plasma, it is rapidly incorporated into spherical HDLs that also contain apoA-I to form (A-I/A-II)HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号