共查询到20条相似文献,搜索用时 15 毫秒
1.
Food plant preferences of some Lepidoptera species associated with particular colour of the flowers were investigated. Based on 1,329 field observations of 43 Lepidoptera and 66 plant species, Lepidoptera showed a high tendency (G-test, G adj = 698.6, df = 6, P < 0.001) to use the yellow (29%) and pink (28%) coloured flowers for foraging. Compared to the other colours it was evident that plants with red flowers (2%) were not preferred. Moreover, the plants with red (H = 0.435) and yellow-white (H = 0.543) flowers were not visited by diverse Lepidoptera species. Although yellow and pink flowers were most frequently visited, the highest degrees of the Lepidoptera diversity values were associated with the plants having blue (H = 0.647) and purple (H = 0.634) flowers. Species of Nymphalidae were most numerous (14 spp.) in the study area and the members of this family were observed 430 times on 39 different plant species, but never on plants with red flowers. Pieris rapae was the most abundant species that occurred 136 times on a total of 21 different plant species of which eight had yellow flowers. But, this species has never been seen while feeding on red flowers. 相似文献
2.
3.
Foraging theory predicts that individuals should choose a prey that maximizes energy rewards relative to the energy expended to access, capture, and consume the prey. However, the relative roles of differences in the nutritive value of foods and costs associated with differences in prey accessibility are not always clear. Coral‐feeding fishes are known to be highly selective feeders on particular coral genera or species and even different parts of individual coral colonies. The absence of strong correlations between the nutritional value of corals and prey preferences suggests other factors such as polyp accessibility may be important. Here, we investigated within‐colony feeding selectivity by the corallivorous filefish, Oxymonacanthus longirostris, and if prey accessibility determines foraging patterns. After confirming that this fish primarily feeds on coral polyps, we examined whether fish show a preference for different parts of a common branching coral, Acropora nobilis, both in the field and in the laboratory experiments with simulated corals. We then experimentally tested whether nonuniform patterns of feeding on preferred coral species reflect structural differences between polyps. We found that O. longirostris exhibits nonuniform patterns of foraging in the field, selectively feeding midway along branches. On simulated corals, fish replicated this pattern when food accessibility was equal along the branch. However, when food access varied, fish consistently modified their foraging behavior, preferring to feed where food was most accessible. When foraging patterns were compared with coral morphology, fish preferred larger polyps and less skeletal protection. Our results highlight that patterns of interspecific and intraspecific selectivity can reflect coral morphology, with fish preferring corals or parts of coral colonies with structural characteristics that increase prey accessibility. 相似文献
4.
5.
6.
7.
Alana Lentin 《Ethnic and racial studies》2015,38(8):1401-1406
In writing on ‘John Rex's Main Mistake’, Michael Banton reveals more about Banton than he does about Rex. I use Banton's discussion of the differences between his own and John Rex's ‘mistakes’ to explore why, in my view, race continues to have analytical purchase in a purportedly ‘post-racial’ age 相似文献
9.
Antigenic peptide binding to MHC class II molecules in the endocytic pathway occurs via a multifactorial process that requires the support of a specialized lysosomal chaperone called HLA-DM. DM shows both in primary amino acid sequence and quaternary structure a high homology to both MHC class I and class II molecules. Like the peptide presenting class II molecules, DM is expressed in all professional antigen presenting cells. DM catalyzes the dissociation of peptides that do not bind stably to the class II peptide-binding groove, thereby leading to the preferential presentation of stably binding antigenic peptides. The recently discovered HLA-DO molecule is mainly expressed in B cells and associates with DM, thereby markedly affecting DM function. Like DM, the genes encoding the HLA-DO heterodimer lie within the MHC class II region and exhibit strong homology to classical class II molecules. This review evaluates the unique effects of DO on DM-mediated antigen presentation by MHC class II molecules and discusses the possible physiological relevance for the B cell-specific expression of DO and its function. 相似文献
10.
11.
12.
13.
14.
16.
Basal ganglia (BG) constitute a network of seven deep brain nuclei involved in a variety of crucial brain functions including: action selection, action gating, reward based learning, motor preparation, timing, etc. In spite of the immense amount of data available today, researchers continue to wonder how a single deep brain circuit performs such a bewildering range of functions. Computational models of BG have focused on individual functions and fail to give an integrative picture of BG function. A major breakthrough in our understanding of BG function is perhaps the insight that activities of mesencephalic dopaminergic cells represent some form of ‘reward’ to the organism. This insight enabled application of tools from ‘reinforcement learning,’ a branch of machine learning, in the study of BG function. Nevertheless, in spite of these bright spots, we are far from the goal of arriving at a comprehensive understanding of these ‘mysterious nuclei.’ A comprehensive knowledge of BG function has the potential to radically alter treatment and management of a variety of BG-related neurological disorders (Parkinson’s disease, Huntington’s chorea, etc.) and neuropsychiatric disorders (schizophrenia, obsessive compulsive disorder, etc.) also. In this article, we review the existing modeling literature on BG and hypothesize an integrative picture of the function of these nuclei. 相似文献
17.
In this issue of Neuron, Ajemian et al. present a computational model of the activity of neurons in primary motor cortex (M1) during isometric movements in different postures. By modeling the output of M1 neurons in terms of their influence on muscles, they find each M1 neuron maps its output into a particular pattern of muscle actions. 相似文献
18.
Many organisms have the ability to form spores, a remarkable phase in their life cycles. Compared with vegetative cells, spores have several advantages (e.g. resistance to toxic compounds, temperature, desiccation and radiation) making them well suited to various applications. The applications of spores that first spring to mind are bio-warfare and the related, but more positive, field of biological control. Although they are often considered metabolically inert, spores can also be used as biocatalysts. Other uses for spores are found in the fields of probiotics, tumour detection and treatment, biosensing and in the "war against drugs". 相似文献
19.
20.
Ferguson MA 《Parasitology today (Personal ed.)》1994,10(2):48-52
Various functions for glycosylphosphatidylinositol (GPI) protein anchors have been described in mammalian and protozoan systems. These data suggest that some functions are common to higher and lower eukaryotes, whereas others may represent adaptations that are specifically advantageous to either unicellular or metazoan organisms. In this article, Mike Ferguson discusses the current theories of GPI function that have relevance to protozoan parasites and their mammalian hosts. 相似文献