首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tumor-stroma interactions play a significant role in tumor development and progression. Alterations in the stromal microenvironment, including enhanced vasculature (angiogenesis), modified extracellular matrix composition, inflammatory cells, and dys-balanced protease activity, are essential regulatory factors of tumor growth and invasion. Differential modulation of stromal characteristics is induced by epithelial skin tumor cells depending on their transformation stage when grown as surface transplants in vivo. Tumor cells can regulate the development of a "tumor-stroma" via the aberrant expression of growth factors or induction of growth factor receptors in the stromal compartment. In this context, secretion of the hematopoietic growth factors G-CSF and GM-CSF, constituitively expressed in enhanced malignant tumors, may be good candidates for induction of a tumor stroma through their effect on inflammatory cells. Upon its induction, the tumor stroma will reciprocally influence the differentiation status of tumor cells resulting in a normalization of benign tumor epithelia and the maintenance of a malignant phenotype, respectively. In the HaCaT model for squamous cell carcinoma of the skin, stromal activation and angiogenesis are transient in pre-malignant transplants, however they remain persistent in malignant transplants where progressive angiogenesis is closely correlated with tumor invasion. While continued expression of VEGF and PDGF are associated with benign tumor phenotypes, activation of VEGFR-2 is a hallmark of malignant tumors and accompanies ongoing angiogenesis and tumor invasion. As a consequence the inhibition of ongoing angiogenesis by blocking VEGFR-2 signalling resulted in dramatically impaired malignant tumor expansion and invasion. Comparably, tumor vascularization and invasion was blocked by disturbing the balance of matrix protease activity caused by a lack of PAI-1 in the stromal cells of the knockout mouse hosts. A similar inhibition of tumor vascularization was caused by TSP-1 over-expression in skin carcinoma cells, which also blocked tumor invasion and expansion. On the other hand, when granulation tissue and angiogenesis were only transiently activated as a result of stable transfection of PDGF into non-tumorigenic HaCaT cells, the target cells formed benign, but not malignant, tumors. Collectively, these data show that tumor vascularization, providing intimate association of blood vessels with tumor cells, is a prerequisite for tumor invasion. A potential mechanism for this interrelationship may be the differential regulation of MMP-expression in tumors of different grades of malignancy. In vitro MMP expression did not discriminate between benign and malignant tumor cells unless they were co-cultured with stromal fibroblasts. However, in vivo regulation of MMP expression was clearly dependent on tumor phenotype. While MMP-1 and MMP-13 were down-regulated in benign transplants, they were persistently up-regulated in malignant ones. A tight balance between proteases and their inhibitors is crucial for both the formation and infiltration of blood vessels and for tumor cell invasion, thus again emphasizing the importance of the stromal compartment for the development and progression of carcinomas.  相似文献   

2.
骨桥蛋白(osteopontin,OPN)是一种分泌型磷酸化糖蛋白,由多种组织细胞合成与分泌,参与调节细胞的黏附、增殖、趋化、转移、浸润和凋亡过程。OPN在多种肿瘤中高表达,与肿瘤的发生和发展密切相关,组织和血液中的OPN表达量也是肿瘤诊断和预后的指标。近年来,越来越多的研究通过抑制OPN、OPN的受体以及OPN的下游信号通路的方法抑制了肿瘤的发展。本文将从多方面阐述OPN与肿瘤的关系以及与肿瘤治疗的研究进展。  相似文献   

3.
水通道 AQP1 敲除小鼠肿瘤血管生成障碍及肿瘤生长减缓   总被引:9,自引:1,他引:8  
血管生成是肿瘤生长、浸润和转移的必要步骤. 肿瘤血管生成涉及瘤旁组织血管内皮细胞增殖、向肿瘤细胞团内迁移以及管腔形成,目前机理尚不完全清楚. 水通道 AQP1 在多种肿瘤血管内皮高表达,提示其可能参与肿瘤血管的生成过程. 应用 AQP1 敲除小鼠荷瘤实验证实了 AQP1 在黑色素瘤生长和血管新生中的作用. 结果表明,皮下接种的黑色素瘤在 AQP1 敲除小鼠的生长较之在野生型小鼠延迟近 30% (P<0.01). 免疫组化与肿 瘤病理形态学分析显示, AQP1 在野生型小鼠黑色素瘤血管内皮细胞上高表达,而在 AQP1 敲除小鼠黑色素瘤血管内皮细胞呈阴性表达. 在病理结构上,黑色素瘤细胞围绕血管分支呈岛状分布. 野生型小鼠黑色素瘤内血管管腔较细小,而 AQP1(-/-)小鼠黑色素瘤内血管床显著膨大. AQP1(-/-)小鼠肿瘤内平均微血管密度 (47/mm2) 较之 AQP1(+/+) 肿瘤 (142/mm2) 减少 67% (P<0.01). 围绕 AQP1(-/-) 肿瘤血管的肿瘤细胞岛周边坏死区域明显大于 AQP1(+/+)肿瘤. 上述结果提出确切证据表明, AQP1 缺失使肿瘤血管生成发生障碍,从而影响了肿瘤血液供应和肿瘤生长. AQP1参与肿瘤血管生成的机理值得深入研究.  相似文献   

4.
A method is reported for the study of early phases of neovascularization in syngeneic murine tumors and human tumor xenografts in nude mice. Using this method, the effect of irradiation of tumor cells or tumor bed on tumor angiogenesis was studied. Tumor cells were injected intradermally in the abdominal skin flap, which was reopened at 2-day intervals to quantify newly formed blood vessels at the site of tumor cell injection. Both tumor cell injection and blood vessel counting were performed under a dissecting microscope. Using three syngeneic murine tumors and two clones of a human colonic adenocarcinoma, it was observed that new blood vessels started appearing within a few days after tumor cell injection and that this event preceded measurable tumor growth. The number of blood vessels increased exponentially for several days but then their further growth slowed. The extent of angiogenesis depended on the tumor type and the number of tumor cells injected. The exposure of the skin flap to ionizing radiation prior to tumor cell injection reduced neovascularization. We further observed that heavily irradiated tumor cells retained their ability to induce angiogenic response and that lymphoid cells (peritoneal exudate and spleen cells) could also elicit an angiogenic response, although it is weaker than the response elicited by tumor cells. Thus this method is suitable for quantification and kinetics of early phases of tumor angiogenesis in individual mice bearing transplants of syngeneic tumors or human tumor xenografts, and it can be useful for investigating various regulators of tumor angiogenesis.  相似文献   

5.
Invasion of neighboring extracellular matrix tissue, the lymphatic system and blood vessels is a key element of tumor cell metastasis in many epithelial tumors. Understanding the cell motility pathways that contribute to invasion can provide new approaches and targets for anticancer therapy. The recent convergence of technologies for expression profiling and intravital imaging has revealed the identities of some of the genes that contribute to motility and chemotaxis of cancer cells in tumors. In particular, the genes encoding a minimum motility machine are coordinately upregulated in tumor cells collected by an in vivo invasion assay. These results support a "tumor microenvironment invasion model" and provide new target opportunities for cancer therapy.  相似文献   

6.
传统的观察血管的方法需将组织制成切片,然后通过光学显微镜进行观察。显示的只是血管的某一片段而无法观察到血管的全貌。应用激光扫描共聚焦显微镜,可对活体动物血管进行断层成像,从而再现血管的结构。本方法为对肿瘤等病变组织血管进行研究提供了一种新的检测手段。  相似文献   

7.
It has been well established that a functioning vascular supply is essential for solid tumor growth and metastases. In the absence of a viable vascular network, tumors are unable to grow beyond a few millimeters and therefore remain dormant. Initiation of angiogenesis allows for continued tumor growth and progression. Targeting tumor vasculature, either by inhibiting growth of new tumor blood vessels (antiangiogenic agents) or by destroying the already present tumor vessels (vascular disrupting agents; VDA), is an area of extensive research in the development of new antitumor agents. These two groups differ in their direct physiological target, the type or extent of disease that is likely to be susceptible, and the treatment schedule. VDAs target the established tumor blood vessels, resulting in tumor ischemia and necrosis. These agents show more immediate effects compared to antiangiogenic agents and may have more efficacy against advanced bulky disease. VDAs can be divided into two groups--ligand-bound and small molecule agents. Both VDA groups have demonstrated antitumor effects and tumor core necrosis, but consistently leave a thin rim of viable tumor cells at the periphery of the tumor. More evidence suggests VDAs will have their greatest effect in combination with conventional chemotherapy or other modes of treatment that attack this outer rim of cells.  相似文献   

8.
The tumor immune microenvironment (TIME) is the cellular environment in which tumors exist. This includes: surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, lymphocytes, signaling molecules, immune checkpoint proteins and the extracellular matrix (ECM). The TIME plays a critical role in cancer progression and regulation. Tumors can influence the microenvironment by releasing extracellular signals, promoting tumor angiogenesis and inducing peripheral immune tolerance, while the immune cells in the microenvironment can affect the growth and evolution of cancerous cells. The molecules and cells in the TIME influence disease outcome by altering the balance of suppressive versus cytotoxic responses in the vicinity of the tumor. Having a better understanding of the tumor immune microenvironment will pave the way for identifying new targets for immunotherapies that promote cancer elimination.  相似文献   

9.
神经节苷脂GD3与肿瘤的血管生成作用(英文)   总被引:2,自引:0,他引:2  
 血管生成作用 (angiogenesis)是实体瘤 (solidtumor)生长和扩散的必要条件 .实体瘤的微血管密度与肿瘤的恶性程度成正相关 ,而且也与病人的预后密切相关 .因此 ,对抗血管生成作用是一种很有吸引力的肿瘤疗法 .神经节苷脂GD3在多种类型的肿瘤中超常表达 .一般认为 ,神经节苷脂GD3有增强肿瘤本身及邻近组织中的血管生成作用 ,从而促进肿瘤的演进和转移 .最近的研究工作为这一假设提供了有力的实验证据 .应用GD3合酶的反意DNA转染肿瘤细胞从而抑制细胞中的GD3合酶的表达 ,极大地降低了细胞的内源GD3含量 .进一步的研究证明 ,抑制肿瘤细胞的GD3合成明显地降低了该肿瘤细胞的血管内皮生长因子 (VEGF)的水平 ,并使血管生成作用降至最小限度 .这些实验说明GD3在肿瘤的血管生成中具有重要的作用 .此外 ,GD3作为肿瘤的一种相关抗原 ,它与血管生成因子的协同效应将在未来的联合基因疗法中起到重要的作用  相似文献   

10.
Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to monitor vascular changes induced by sunitinib within a murine xenograft kidney tumor, we previously determined a dose that caused only partial destruction of blood vessels leading to "normalization" of tumor vasculature and improved blood flow. In the current study, kidney tumors were treated with this dose of sunitinib to modify the tumor microenvironment and enhance the effect of kidney tumor irradiation. The addition of soy isoflavones to this combined antiangiogenic and radiotherapy approach was investigated based on our studies demonstrating that soy isoflavones can potentiate the radiation effect on the tumors and act as antioxidants to protect normal tissues from treatment-induced toxicity. DCE-MRI was used to monitor vascular changes induced by sunitinib and schedule radiation when the uptake and washout of the contrast agent indicated regularization of blood flow. The combination of sunitinib with tumor irradiation and soy isoflavones significantly inhibited the growth and invasion of established kidney tumors and caused marked aberrations in the morphology of residual tumor cells. DCE-MRI studies demonstrated that the three modalities, sunitinib, radiation, and soy isoflavones, also exerted antiangiogenic effects resulting in increased uptake and clearance of the contrast agent. Interestingly, DCE-MRI and histologic observations of the normal contralateral kidneys suggest that soy could protect the vasculature of normal tissue from the adverse effects of sunitinib. An antiangiogenic approach that only partially destroys inefficient vessels could potentially increase the efficacy and delivery of cytotoxic therapies and radiotherapy for unresectable primary renal cell carcinoma tumors and metastatic disease.  相似文献   

11.
Tightly regulated crosstalk between endothelial cells and pericytes is required for formation and maintenance of functional blood vessels. When the NG2 proteoglycan is absent from pericyte surfaces, vascularization of syngeneic tumors growing in the C57Bl/6 mouse brain is aberrant in several respects, resulting in retardation of tumor progression. In the NG2 null mouse brain, pericyte investment of the tumor vascular endothelium is reduced, causing deficiencies in both pericyte and endothelial cell maturation, as well as reduced basal lamina assembly. While part of this deficit may be due to the previously-identified role of NG2 in β1 integrin-dependent periyte/endothelial cell crosstalk, the ablation of NG2 also appears responsible for loss of collagen VI anchorage, in turn leading to reduced collagen IV deposition. Poor functionality of tumor vessels in NG2 null brain is reflected by reduced vessel patency and increased vessel leakiness, resulting in large increases in tumor hypoxia. These findings demonstrate the importance of NG2-dependent pericyte/endothelial cell interaction in the development and maturation of tumor blood vessels, identifying NG2 as a potential target for anti-angiogenic cancer therapy.  相似文献   

12.
Myeloid cells are the most abundant immune cells within tumors and have been shown to promote tumor progression. Modern intravital imaging techniques enable the observation of live cellular behavior inside the organ but can be challenging in some types of cancer due to organ and tumor accessibility such as intestine. Direct observation of intestinal tumors has not been previously reported. A surgical procedure described here allows direct observation of myeloid cell dynamics within the intestinal tumors in live mice by using transgenic fluorescent reporter mice and injectable tracers or antibodies. For this purpose, a four-color, multi-region, micro-lensed spinning disk confocal microscope that allows long-term continuous imaging with rapid image acquisition has been used. ApcMin/+ mice that develop multiple adenomas in the small intestine are crossed with c-fms-EGFP mice to visualize myeloid cells and with ACTB-ECFP mice to visualize intestinal epithelial cells of the crypts. Procedures for labeling different tumor components, such as blood vessels and neutrophils, and the procedure for positioning the tumor for imaging through the serosal surface are also described. Time-lapse movies compiled from several hours of imaging allow the analysis of myeloid cell behavior in situ in the intestinal microenvironment.  相似文献   

13.
As a major heparan sulfate proteoglycan (PG) in basement membranes, perlecan has been linked to tumor invasion, metastasis, and angiogenesis. Here we produced epidermal tumors in immunocompromised rats by injection of mouse RT101 tumor cells. Tumor sections stained with species-specific perlecan antibodies, together with immunoelectron microscopy, showed that perlecan distributed around blood vessels was of both host and tumor cell origin. Tumor-derived perlecan was also distributed throughout the tumor matrix. Blood vessels stained with rat-specific PECAM-1 antibody showed their host origin. RT101 cells also expressed two other basement membrane heparan sulfate PGs, agrin and type XVIII collagen. Antisense targeting of perlecan inhibited tumor cell growth in vitro, while exogenous recombinant perlecan, but not heparin, restored the growth of antisense perlecan-expressing cells, suggesting that perlecan core protein, rather than heparan sulfate chains from perlecan, agrin, or type XVIII collagen, regulates tumor cell growth. However, perlecan core protein requirement was not related to fibroblast growth factor-7 binding because RT101 cells were unresponsive to and lacked receptors for this growth factor. In vivo, antisense perlecan-transfected cells generated no tumors, whereas untransfected and vector-transfected cells formed tumors with obvious neovascularization, suggesting that tumor perlecan rather than host perlecan controls tumor growth and angiogenesis.  相似文献   

14.
The involvement of endothelial progenitor cells in tumor angiogenesis   总被引:11,自引:0,他引:11  
Endothelial progenitor cells (EPCs) have been isolated from peripheral blood CD34, VEGFR-2, or AC 133 (CD133) antigen-positive cells, which may home to site of neovascularization and differentiate into endothelial cells in situ. Endothelial cells contribute to tumor angiogenesis, and can originate from sprouting or co-option of neighbouring pre-existing vessels. Emerging evidence indicate that bone marrow-derived circulating EPCs can contribute to tumor angiogenesis and growth of certain tumors. This review article will summarize the literature data concerning this new role played by EPCs in tumor angiogenesis.  相似文献   

15.
Electropermeabilization/electroporation (EP) provides a tool for the introduction of molecules into cells and tissues. In electrochemotherapy (ECT), cytotoxic drugs are introduced into cells in tumors, and nucleic acids are introduced into cells in gene electrotransfer. The normal and tumor tissue blood flow modifying effects of EP and the vascular disrupting effect of ECT in tumors have already been determined. However, differential effects between normal vs. tumor vessels, to ensure safety in the clinical application of ECT, have not been determined yet. Therefore, the aim of our study was to determine the effects of EP and ECT with bleomycin on the HT-29 human colon carcinoma tumor model and its surrounding blood vessels. The response of blood vessels to EP and ECT was monitored in real time, directly at the single blood vessel level, by in vivo optical imaging in a dorsal window chamber in SCID mice with 70 kDa fluorescently labeled dextrans. The response of tumor blood vessels to EP and ECT started to differ within the first hour. Both therapies induced a vascular lock, decreased functional vascular density (FVD) and increased the diameter of functional blood vessels within the tumor. The effects were more pronounced for ECT, which destroyed the tumor blood vessels within 24 h. Although the vasculature surrounding the tumor was affected by EP and ECT, it remained functional. The study confirms the current model of tumor blood flow modifying effects of EP and provides conclusive evidence that ECT is a vascular disrupting therapy with a specific effect on the tumor blood vessels.  相似文献   

16.
Vascular endothelial growth factor A (VEGF-A) is well known for its key roles in blood vessel growth. Although most studies on VEGF and VEGF receptors have been focused on their functions in angiogenesis and in endothelial cells, the role of VEGF in cancer biology appears as an emerging area of importance. In this context, the presence of VEGF receptors in tumor cells strongly suggests that VEGF-A also promotes a wide range of functions, both in vitro and in vivo, all autocrine functions on tumor cells, including adhesion, survival, migration and invasion. Ultimately, refining our knowledge of VEGF signaling pathways in tumor cells should help us to understand why the current used treatments targeting the VEGF pathway in cancer are not universally effective in inhibiting metastasis tumors, and it should also provide new avenues for future therapies.  相似文献   

17.
Vascular endothelial growth factor A (VEGF-A) is well known for its key roles in blood vessel growth. Although most studies on VEGF and VEGF receptors have been focused on their functions in angiogenesis and in endothelial cells, the role of VEGF in cancer biology appears as an emerging area of importance. In this context, the presence of VEGF receptors in tumor cells strongly suggests that VEGF-A also promotes a wide range of functions, both in vitro and in vivo, all autocrine functions on tumor cells, including adhesion, survival, migration and invasion. Ultimately, refining our knowledge of VEGF signaling pathways in tumor cells should help us to understand why the current used treatments targeting the VEGF pathway in cancer are not universally effective in inhibiting metastasis tumors, and it should also provide new avenues for future therapies.  相似文献   

18.
During the infiltration process, glioma cells are known to migrate along preexisting anatomical structures such as blood vessels, axonal fiber tracts and the subependymal space, thereby widely invading surrounding CNS tissue. This phenomenon represents a major obstacle for the clinical treatment of these tumors. Several extracellular key factors and intracellular signaling pathways have been previously linked to the highly aggressive, invasive phenotype observed in malignant gliomas. The glioblastoma (GBM), which is the most malignant form of these tumors, is histologically characterized by areas of tumor necroses and pseudopalisading cells, the latter likely representing tumor cells actively migrating away from the hypoxic- ischemic core of the tumor. It is believed that intravascular thromboses play a major role in the emergence of hypoxia and intratumoral necroses in GBMs. One of the most highly upregulated prothrombotic factor in malignant gliomas is tissue factor (TF), a 47 kDa type I transmembrane protein belonging to the cytokine receptor superfamily. In a recent study, we provided evidence that TF/FVIIa signaling via the protease-activated receptor 2 (PAR-2) promotes cell growth, migration and invasion of glioma cells. In this Commentary & View, we outline the key molecular players involved in migration and invasion of gliomas, highlight the potential role of TF for the pro-migratory and pro-invasive phenotype of these tumors and discuss the underlying mechanisms on the cellular level and in the tumor microenvironment.Key words: brain tumor, blood coagulation, hypoxia, MAP kinase, cancer stem cells, tumor invasion  相似文献   

19.
Invasion and metastasis of solid tumors are the major causes of death in cancer patients. Cancer stem cells (CSCs) constitute a small fraction of tumor cell population, but play a critical role in tumor invasion and metastasis. The xenograft of tumor cells in immunodeficient mice is one of commonly used in vivo models to study the invasion and metastasis of cancer cells. However, this model is time-consuming and labor intensive. Zebrafish (Danio rerio) and their transparent embryos are emerging as a promising xenograft tumor model system for studies of tumor invasion. In this study, we established a tumor invasion model by using zebrafish embryo xenografted with human glioblastoma cell line U87 and its derived cancer stem cells (CSCs). We found that CSCs-enriched from U87 cells spreaded via the vessels within zebrafish embryos and such cells displayed an extremely high level of invasiveness which was associated with the up-regulated MMP-9 by CSCs. The invasion of glioma CSCs (GSCs) in zebrafish embryos was markedly inhibited by an MMP-9 inhibitor. Thus, our zebrafish embryo model is considered a cost-effective approach tostudies of the mechanisms underlying the invasion of CSCs and suitable for high-throughput screening of novel anti-tumor invasion/metastasis agents.  相似文献   

20.
Angiopoietins have been increasingly implicated to play important roles in blood vessel formation, remodeling, maturation, and maintenance. However, their roles in tumor angiogenesis and hence tumor growth and metastasis still remain uncertain. In this work, angiopoietin 1 expression was amplified in human cervical cancer HeLa cells by stable transfection or recombinant human adenovirus-mediated gene transfer. We show that increased angiopoietin 1 expression promoted in vivo growth of human cervical cancers in mice by promoting tumor angiogenesis and inhibiting tumor cell apoptosis. Furthermore, we also show for the first time that overexpression of angiopoietin 1 also leads to increased tumor vessel plasticity with a large number of vessels lacking periendothelial supporting cells. These results indicate that angiopoietin 1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号