首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oral microbiota plays a vital role in maintaining the homeostasis of oral cavity. Dental caries are among the most common oral diseases in children and pathogenic bacteria contribute to the development of the disease. However, the overall structure of bacterial communities in the oral cavity from children with dental caries has not been explored deeply heretofore. We used high-throughput barcoded pyrosequencing and PCR-denaturing gradient gel electrophoresis (DGGE) to examine bacterial diversity of oral microbiota in saliva and supragingival plaques from 60 children aged 3 to 6 years old with and without dental caries from China. The multiplex barcoded pyrosequencing was performed in a single run, with multiple samples tagged uniquely by multiplex identifiers. As PCR-DGGE analysis is a conventional molecular ecological approach, this analysis was also performed on the same samples and the results of both approaches were compared. A total of 186,787 high-quality sequences were obtained for evaluating bacterial diversity and 41,905 unique sequences represented all phylotypes. We found that the oral microbiota in children was far more diverse than previous studies reported, and more than 200 genera belonging to ten phyla were found in the oral cavity. The phylotypes in saliva and supragingival plaques were significantly different and could be divided into two distinct clusters (p < 0.05). The bacterial diversity in oral microbiome analyzed by PCR-DGGE and barcoded pyrosequencing was employed to cross validate the data sets. The genera of Streptococcus, Veillonella, Actinomyces, Granulicatella, Leptotrichia, and Thiomonas in plaques were significantly associated with dental caries (p < 0.05). The results showed that there was no one specific pathogen but rather pathogenic populations in plaque that significantly correlated with dental caries. The enormous diversity of oral microbiota allowed for a better understanding of oral microecosystem, and these pathogenic populations in plaque provide new insights into the etiology of dental caries and suggest new targets for interventions of the disease.  相似文献   

2.

Objective

Early childhood caries (ECC) has become a prevalent public health problem among Chinese preschool children. The bacterial microflora is considered to be an important factor in the formation and progress of dental caries. However, high-throughput and large-scale studies of the primary dentition are lacking. The present study aimed to compare oral microbial profiles between children with severe ECC (SECC) and caries-free children.

Methods

Both saliva and supragingival plaque samples were obtained from children with SECC (n = 20) and caries-free children (n = 20) aged 3 to 4 years. The samples were assayed using the Human Oral Microbe Identification Microarray (HOMIM).

Results

A total of 379 bacterial species were detected in both the saliva and supragingival plaque samples from all children. Thirteen (including Streptococcus) and two (Streptococcus and Actinomyces) bacterial species in supragingival plaque and saliva, respectively, showed significant differences in prevalence between the two groups. Of these, the frequency of Streptococcus mutans detection was significantly higher in both saliva (p = 0.026) and plaque (p = 0.006) samples from the SECC group than in those from the caries-free group.

Conclusions

The findings of our study revealed differences in the oral microbiota between the SECC and caries-free groups Several genera, including Streptococcus, Porphyromonas, and Actinomyces, are strongly associated with SECC and can be potential biomarkers of dental caries in the primary dentition.  相似文献   

3.
Ling Z  Liu X  Chen X  Zhu H  Nelson KE  Xia Y  Li L  Xiang C 《Microbial ecology》2011,61(3):704-714
The female genital tract (FGT) harbors very large numbers of bacterial species that are known to play an important role on vaginal health. Previous studies have focused on bacterial diversity in the vagina, but little is known about the ectocervical microbiota associated with FGT infections. In our study, vaginal swabs and ectocervical swabs were collected from 100 participants in China, including 30 women with bacterial vaginosis (BV; BV group), 22 women with cervicitis (Cer group), 18 women with BV in combination with cervicitis (BC group) and 30 healthy control women (CN group). The diversity and richness of cervicovaginal microbiota were investigated with culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR) targeting 11 microorganisms that have been associated with FGT infections. Despite significant interpersonal variations, the PCR-DGGE profiles revealed that vaginal microbiota and ectocervical microbiota were clearly much more complex in the BV group, while the ectocervical microbiota showed no significant difference between healthy and diseased participants. Using species-specific qPCR, BV and cervicitis were significantly associated with a dramatic decrease in Lactobacillus species (p < 0.05), and potential pathogenic species such as Gardnerella, Atopobium, Eggerthella, Leptotrichia/Sneathia, and Prevotella were more common and in higher copy numbers in BV than in CN samples (p values ranged from 0.000 to 0.021). No significant differences were observed between healthy and cervicitis samples (p > 0.05) in ectocervical microbiota. The total numbers of bacteria were significantly lower in the ectocervix as compared in the vagina (p < 0.05). Intriguingly, vaginal microbiota from participants with BV in combination with cervicitis was quite different from that of participants with BV or cervicitis alone. Our study demonstrated that the cervicovaginal microbiota was actively involved in the process of FGT infections. The predominant bacteria of the cervicovaginal communities were clearly associated with BV; however, there was not sufficient evidence that the ectocervical microbiota is directly involved in the development of cervicitis.  相似文献   

4.
The oral cavity of humans is inhabited by hundreds of bacterial species and some of them have a key role in the development of oral diseases, mainly dental caries and periodontitis. We describe for the first time the metagenome of the human oral cavity under health and diseased conditions, with a focus on supragingival dental plaque and cavities. Direct pyrosequencing of eight samples with different oral-health status produced 1 Gbp of sequence without the biases imposed by PCR or cloning. These data show that cavities are not dominated by Streptococcus mutans (the species originally identified as the ethiological agent of dental caries) but are in fact a complex community formed by tens of bacterial species, in agreement with the view that caries is a polymicrobial disease. The analysis of the reads indicated that the oral cavity is functionally a different environment from the gut, with many functional categories enriched in one of the two environments and depleted in the other. Individuals who had never suffered from dental caries showed an over-representation of several functional categories, like genes for antimicrobial peptides and quorum sensing. In addition, they did not have mutans streptococci but displayed high recruitment of other species. Several isolates belonging to these dominant bacteria in healthy individuals were cultured and shown to inhibit the growth of cariogenic bacteria, suggesting the use of these commensal bacterial strains as probiotics to promote oral health and prevent dental caries.  相似文献   

5.
In the present study, we sought to investigate the effects of emotional and physiological stress on plaque instability in atherosclerosis. We used different stress-treated apolipoprotein E (ApoE)-deficient mice, which have been shown to spontaneously develop atherosclerosis with features similar to those seen in humans, as an animal model. Morphology study showed that emotional stress (ES) obviously promoted the development of atherosclerotic plaques and plaque instability evidenced by significantly increasing plaque size, plaque-to-surface ratio and plaque calcification, and enhancing the frequency of large necrotic core and medial erosion compared with control ApoE−/− mice (P < 0.01). Physiological stress (PS) treatment alone did not affect the plaque stability compared with control ApoE−/− mice (P > 0.05). However, the combination of ES and PS treatment (CS) initiated much stronger plaque instability compared with ES treatment alone (P < 0.01), increased the frequency of thin fibrous caps, and even triggered plaque rupture and buried fibrous cap. Immunohistochemical analysis indicated that both ES and CS treatment led to an increase in the accumulation of macrophages and T cells and a decrease of smooth muscle cells, reflecting an unstable atherosclerotic plaque phenotype, in the atherosclerotic lesions in ApoE−/− mice. PS alone did not affect plaque cellular components. Similarly, CS-mediated changes in atherosclerotic plaque composition were stronger than that caused by ES alone (P < 0.01). Taken together, ES treatment alone is sufficient to promote plaque instability. PS alone does not affect atherosclerotic plaque development, but can potentiate ES-mediated plaque destabilization.  相似文献   

6.

Background

The aim of this longitudinal study was to evaluate the oral microbiota in children from age 3 months to 3 years, and to determine the association of the presence of caries at 3 years of age.

Methods and findings

Oral biofilms and saliva were sampled from children at 3 months (n = 207) and 3 years (n = 155) of age, and dental caries was scored at 3 years of age. Oral microbiota was assessed by culturing of total lactobacilli and mutans streptococci, PCR detection of Streptococcus mutans and Streptococcus sobrinus, 454 pyrosequencing and HOMIM (Human Oral Microbe Identification Microarray) microarray detection of more then 300 species/ phylotypes. Species richness and taxa diversity significantly increased from 3 months to 3 years. Three bacterial genera, present in all the 3-month-old infants, persisted at 3 years of age, whereas three other genera had disappeared by this age. A large number of new taxa were also observed in the 3-year-olds. The microbiota at 3 months of age, except for lactobacilli, was unrelated to caries development at a later age. In contrast, several taxa in the oral biofilms of the 3-year-olds were linked with the presence or absence of caries. The main species/phylotypes associated with caries in 3-year-olds belonged to the Actinobaculum, Atopobium, Aggregatibacter, and Streptococcus genera, whereas those influencing the absence of caries belonged to the Actinomyces, Bergeyella, Campylobacter, Granulicatella, Kingella, Leptotrichia, and Streptococcus genera.

Conclusions

Thus, during the first years of life, species richness and taxa diversity in the mouth increase significantly. Besides the more prevalent colonization of lactobacilli, the composition of the overall microbiota at 3 months of age was unrelated to caries development at a later age. Several taxa within the oral biofilms of the 3-year-olds could be linked to the presence or absence of caries.  相似文献   

7.
The oral microbiota influences health and disease states. Some gram‐negative anaerobic bacteria play important roles in tissue destruction associated with periodontal disease. Lactoferrin (LF) and lactoperoxidase (LPO) are antimicrobial proteins found in saliva; however, their influence on the whole oral microbiota currently remains unknown. In this randomized, double‐blinded, placebo‐controlled study, the effects of long‐term ingestion of LF and LPO‐containing tablets on the microbiota of supragingival plaque and tongue coating were assessed. Forty‐six older individuals ingested placebo or test tablets after every meal for 8 weeks. The relative abundance of bacterial species was assessed by 16S rRNA gene high‐throughput sequencing. Most of the bacterial species in supragingival plaque and tongue coating that exhibited significant decreases in the test group were gram‐negative bacteria, including periodontal pathogens. Decreases in the total relative abundance of gram‐negative organisms in supragingival plaque and tongue coating correlated with improvements in assessed variables related to oral health, such as oral malodor and plaque accumulation. Furthermore, there was significantly less microbiota diversity in supragingival plaque at 8 weeks in the test group than in the placebo group and low microbiota diversity correlated with improvements in assessed variables related to oral health. These results suggest that LF and LPO‐containing tablets promote a shift from a highly diverse and gram‐negative‐dominated to a gram‐positive‐dominated community in the microbiota of supragingival plaque and tongue coating. This microbial shift may contribute to improvements in oral health, including oral malodor and state of the gingiva.
  相似文献   

8.
The aim of this study was to determine the levels of trace minerals Zn, Cu, and Se, the effect of dermatophytosis on the level of thiobarbituric acid reactive substances (TBARS) as an indicator of lipid peroxidation, the status of enzymatic and nonenzymatic antioxidants, and the relationship between the mentioned trace minerals and antioxidant defense system in calves with dermatophytosis. A total of 21 Holstein calves with clinically established diagnosis of dermatophytosis and an equal number of healthy ones were included in this study. Results showed that 81% of mycotic isolates were Trichophyton verrucosum, while 19% were Trichophyton mentagrophytes. The level of Zn, Cu, Se, and glutathione (GSH) and the activity of the antioxidant enzymes, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) were significantly (P ≤ 0.05) lower. The plasma level of TBARS was significantly (P ≤ 0.05) higher in dermatophytic calves compared to healthy controls. SOD activity was fairly correlated with serum Cu and positively correlated with serum Zn in healthy control (r = 0.68, P ≤ 0.05; r = 0.58, P ≤ 0.05) and in calves affected with dermatophytosis (r = 0.73, P ≤ 0.05; r = 0.55, P ≤ 0.05), respectively. GSH-Px activity was highly correlated with whole blood selenium (r = 0.78, P ≤ 0.05) in healthy control and dermatophytic subjects (r = 0.76, P ≤ 0.05). Our results demonstrated that in dermatophytosis, the alteration in the antioxidant enzyme activities might be secondary to changes in their cofactor concentrations.  相似文献   

9.
This study examines whether renin-angiotensin-aldosterone system gene polymorphisms: ACE (encoding for angiotensin converting enzyme) c.2306-117_404 I/D, AGTR1 (encoding for angiotensin II type-1 receptor) c.1080*86A>C and CYP11B2 (encoding for aldosterone synthase) c.-344C>T are associated with the extension of coronary atherosclerosis in a group of 647 patients who underwent elective coronary angiography. The extension of CAD was evaluated using the Gensini score. The polymorphisms were determined by PCR and RFLP assays. The associations between genotypes and the extent of coronary atherosclerosis were tested by the Kruskal-Wallis test, followed by pairwise comparisons using Wilcoxon test. The population has been divided into groups defined by: sex, smoking habit, past myocardial infarction, BMI (>, ≤ 25), age (>, ≤ 55), diabetes mellitus, level of total cholesterol (>, ≤ 200 mg/dl), LDL cholesterol (>, ≤ 130 mg/dl), HDL cholesterol (>, ≤ 40 mg/dl), triglycerides (>, ≤ 150 mg/dl). Significant associations between the ACE c.2306-117_404 I/D polymorphism and the Gensini score in men with high total cholesterol levels (PKruskal-Wallis = 0.008; Padjusted = 0.009), high level of LDL cholesterol (PKruskal-Wallis = 0.016; Padjusted = 0.028) and low level of HDL cholesterol (PKruskal-Wallis = 0.04; Padjusted = 0.055) have been found. No association between the AGTR1 c.1080*86A>C and CYP11B2 c.-344C>T and the Gensini score has been found. These results suggest that men who carry ACE c.2306-117_404 DD genotype and have high total cholesterol, high LDL cholesterol and low HDL cholesterol levels may be predisposed to the development of more severe CAD.  相似文献   

10.
Xylitol consumption decreases counts of mutans streptococci. However, the mechanism behind this decrease is not well understood. We studied not only type strains and clinical isolates of mutans streptococci, but also other polysaccharide-forming oral streptococci. Growth inhibition and adherence of cells to a smooth glass surface—reflecting synthesis of water-insoluble polysaccharides were studied in the presence of 2% (0.13 mol/l) and 4% (0.26 mol/l) xylitol. The effect of xylitol was compared to a novel polyol sweetener, erythritol. Except for Streptococcus mutans 10449 and S. sobrinus OMZ 176, the glass surface adhesion of most polysaccharide-forming streptococci was reduced by the presence of both 4% xylitol and erythritol. For the S. mutans and S. sobrinus type strains, the growth inhibition with 4% xylitol and erythritol was 36–77% and for the clinical S. mutans isolates 13–73%. Of the other oral streptococci, only S. sanguinis was inhibited with 4% xylitol (45–55%). For both polyols, the magnitude of the growth inhibition observed was not associated with the magnitude of the decrease in adherence (xylitol: r = −0.18; erythritol: r = 0.49). In conclusion, both xylitol and erythritol can decrease polysaccharide-mediated cell adherence contributing to plaque accumulation through a mechanism not dependent on growth inhibition.  相似文献   

11.
In leukemia, oral manifestations indicate aberrations in oral microbiota. Microbiota structure is determined by both host and environmental factors. In human hosts, how health status shapes the composition of oral microbiota is largely unknown. Taking advantage of advances in high-throughput sequencing, we compared the composition of supragingival plaque microbiota of acute lymphoblastic leukemia (ALL) pediatric patients with healthy controls. The oral microbiota of leukemia patients had lower richness and less diversity compared to healthy controls. Microbial samples clustered into two major groups, one of ALL patients and another of healthy children, with different structure and composition. Abundance changes of certain taxa including the Phylum Firmicutes, the Class Bacilli, the Order Lactobacillales, the Family Aerococcaceae and Carnobacteriaceae, as well as the Genus Abiotrophia and Granulicatella were associated with leukemia status. ALL patients demonstrated a structural imbalance of the oral microbiota, characterized by reduced diversity and abundance alterations, possibly involved in systemic infections, indicating the importance of immune status in shaping the structure of oral microbiota.  相似文献   

12.
Xu M  Wang B  Fu Y  Chen Y  Yang F  Lu H  Chen Y  Xu J  Li L 《Microbial ecology》2012,63(2):304-313
The beneficial effects of Bifidobacteria on health have been widely accepted. Patients with chronic liver disease have varying degrees of intestinal microflora imbalance with a decrease of total Bifidobacterial counts. Since different properties have been attributed to different Bifidobacterium species and there is no information available for the detailed changes in the genus Bifidobacterium in patients with chronic liver disease heretofore, it is meaningful to investigate the structure of this bacterium at the species level in these patients. The aim of this study was to characterize the composition of intestinal Bifidobacterium in patients with hepatitis B virus-induced chronic liver disease. Nested-PCR-based denaturing gradient gel electrophoresis (PCR-DGGE), clone library, and real-time quantitative PCR were performed on the fecal samples of 16 patients with chronic hepatitis B (CHB patients), 16 patients with hepatitis B virus-related cirrhosis (HBV cirrhotics), and 15 healthy subjects (Controls). Though there was no significant difference in the diversity among the three groups (P = 0.196), Bifidobacterium dentium seems to be specifically enhanced in patients as the PCR-DGGE profiles showed, which was further validated by clone library and real-time quantitative PCR. In contrast to the B. dentium, Bifidobacterium catenulatum/Bifidobacterium pseudocatenulatum were detected less frequently in the predominant profile and by quantitative PCR in HBV cirrhotics than in the controls, and the level of this species was also significantly different between these two groups (P = 0.023). Although having no quantitative difference among the three groups, Bifidobacterium longum was less commonly detected in HBV cirrhotics than in CHB patients and Controls by quantitative PCR (P = 0.011). Thus, the composition of intestinal Bifidobacterium was deeply altered in CHB and HBV cirrhotic patients with a shift from beneficial species to opportunistic pathogens. The results provide further insights into the dysbiosis of the intestinal microbiota in patients with hepatitis B virus-induced chronic liver disease and might potentially serve as guidance for the probiotics interventions of these diseases.  相似文献   

13.
The aim of this study was to analyze the distribution and phenotypic properties of the indigenous streptococci in chimpanzee (Pan troglodytes) oral cavities. Eleven chimpanzees (aged from 9 to 44 years, mean ± SD, 26.9 ± 12.6 years) in the Primate Research Institute of Kyoto University were enrolled in this research and brushing bacterial samples collected from them. Streptococci were isolated from the oral cavities of all chimpanzees. The isolates (n = 46) were identified as thirteen species by 16S rRNA genes analysis. The predominant species was Streptococcus sanguinis of mitis streptococci from five chimpanzees (45%). Mutans streptococci were isolated from six chimpanzees (55%). The predominant species in the mutans streptococci were Streptococcus troglodytae from four chimpanzees (36%), this species having been proposed as a novel species by us, and Streptococcus dentirousetti from three chimpanzees (27%). Streptococcus mutans was isolated from one chimpanzee (9%). However, Streptococcus sobrinus, Streptococcus macacae and Streptococcus downei, which are indigenous to human and monkey (Macaca fasciclaris) oral habitats, were not isolated. Of the mutans streptococci, S. troglodytae, S. dentirousetti, and S. mutans possessed strong adherence activity to glass surface.  相似文献   

14.
Severe early childhood caries are a prevalent public health problem among preschool children throughout the world. However, little is known about the microbiota found in association with severe early childhood caries. Our study aimed to explore the bacterial microbiota of dental plaques to study the etiology of severe early childhood caries through pyrosequencing analysis based on 16S rRNA gene V1–V3 hypervariable regions. Forty participants were enrolled in the study, and we obtained twenty samples of supragingival plaque from caries-free subjects and twenty samples from subjects with severe early childhood caries. A total of 175,918 reads met the quality control standards, and the bacteria found belonged to fourteen phyla and sixty-three genera. Our results show the overall structure and microbial composition of oral bacterial communities, and they suggest that these bacteria may present a core microbiome in the dental plaque microbiota. Three genera, Streptococcus, Granulicatella, and Actinomyces, were increased significantly in children with severe dental cavities. These data may facilitate improvements in the prevention and treatment of severe early childhood caries.  相似文献   

15.
The ability of certain oral biofilm bacteria to moderate pH through arginine metabolism by the arginine deiminase system (ADS) is a deterrent to the development of dental caries. Here, we characterize a novel Streptococcus strain, designated strain A12, isolated from supragingival dental plaque of a caries-free individual. A12 not only expressed the ADS pathway at high levels under a variety of conditions but also effectively inhibited growth and two intercellular signaling pathways of the dental caries pathogen Streptococcus mutans. A12 produced copious amounts of H2O2 via the pyruvate oxidase enzyme that were sufficient to arrest the growth of S. mutans. A12 also produced a protease similar to challisin (Sgc) of Streptococcus gordonii that was able to block the competence-stimulating peptide (CSP)–ComDE signaling system, which is essential for bacteriocin production by S. mutans. Wild-type A12, but not an sgc mutant derivative, could protect the sensitive indicator strain Streptococcus sanguinis SK150 from killing by the bacteriocins of S. mutans. A12, but not S. gordonii, could also block the XIP (comX-inducing peptide) signaling pathway, which is the proximal regulator of genetic competence in S. mutans, but Sgc was not required for this activity. The complete genome sequence of A12 was determined, and phylogenomic analyses compared A12 to streptococcal reference genomes. A12 was most similar to Streptococcus australis and Streptococcus parasanguinis but sufficiently different that it may represent a new species. A12-like organisms may play crucial roles in the promotion of stable, health-associated oral biofilm communities by moderating plaque pH and interfering with the growth and virulence of caries pathogens.  相似文献   

16.
Thirty-three enterococcal strains and 10 Streptococcus bovis strains were investigated for their protein-binding cell surface components. Seven extracellular matrix (ECM) proteins were immobilized on Difco latex beads to detect these components on the surface of all enterococcal strains and eight non-autoaggregating S. bovis strains by a particle agglutination assay (PAA). Twenty-three selected strains were also examined in microtiter plate assays. According to the absorbance readings (A570nm), 11 strains were classified as nonadherent (A570nm < 0.1), 10 strains as weakly adherent (0.1 < A570nm > 0.3), and 2 strains as strongly adherent (A570nm > 0.3) in these assays. A direct correlation was found between the values obtained in PAA and A570nm readings of microtiter plate assays. Binding of 125I-labeled bovine lactoferrin to enterococci and streptococci was in the range of 6%–30% and of 125I-labeled human vitronectin in the range of 9%–33% to streptococci. The binding of 125I-labeled ECM proteins to selected strains was much more effectively inhibited by sulfated carbohydrates than by non-sulfated hyaluronic acid, indicating the importance of the sulfate groups of these inhibitors. An inhibition effect of heparin on bLf binding to four selected strains was higher in comparison with fucoidan in the microtiter plates. Thirty-five out of 44 strains had agglutinated rabbit erythrocytes. However, these strains showed no ability to agglutinate bovine or sheep erythrocytes. Received: 28 April 1999 / Accepted: 26 July 1999  相似文献   

17.
Bone morphogenetic protein (BMP)-4 has a crucial role on primordial germ cells (PGCs) development in vivo which can promote stem cell differentiation to PG-like cells. In this study, we investigated the expression of Mvh as one of the specific genes in primordial germ cells after treatment with different doses of BMP4 on bone mesenchymal stem cells (BMSCs)-derived PGCs. Following isolation of BMSCs from male mouse femur and tibia, cells were cultured in medium for 72 h. Passage 4 murine BMSCs were characterized by CD90, CD105, CD34, and CD45 markers and osteo-adipogenic differentiation. Different doses of BMP4 (0, 0.01, 0.1, 1, 5, 25, 50, and 100 ng/ml) were added to BMSCs for PGCs differentiation during 4-days culture. Viability percent, proliferation rates, and expression of Mvh gene were analyzed by RT-qPCR. Data analysis was done with ANOVA test. CD90+, CD105+, CD34, and CD45 BMSCs were able to differentiate to osteo-adipogenic lineages. The results revealed that proliferation rate and viability percent were raised significantly (p ≤ 0.05) by adding 1, 5, 25 ng/ml of BMP4 and there were decreased to the lowest rate after adding 100 ng/ml BMP4 (p ≤ 0.05). There were significant up regulation (p ≤ 0.05) in Mvh expression between 25, 50, and 100 ng/ml BMP4 with other doses. So the selective dose of BMP-4 for treatment during 4-day culture was 25 ng/ml. The results suggest that addition of 25 ng/ml BMP4 had the best effects based on gene-specific marker expression.  相似文献   

18.
Streptococcus mutans is associated with dental caries. A cariogenic biofilm, in particular, has been studied extensively for its role in the formation of dental caries. Herbal extracts such as Cudrania tricuspidata, Sophora flavescens, Ginkgo biloba, and Betula Schmidtii have been used as a folk remedy for treating diseases. The purpose of this study was to evaluate and compare the antibacterial activity of herbal extracts against normal oral streptococci, planktonic and biofilm of S. mutans. Streptococcus gordonii, Streptococcus oralis, Streptococcus salivarius, Streptococcus sanguinis, and S. mutans were cultivated with brain heart infusion broth and susceptibility assay for the herbal extracts was performed according to the protocol of Clinical and Laboratory Standard Institute. Also, S. mutans biofilm was formed on a polystyrene 12-well plate and 8-well chamber glass slip using BHI broth containing 2% sucrose and 1% mannose after conditioning the plate and the glass slip with unstimulated saliva. The biofilm was treated with the herbal extracts in various concentrations and inoculated on Mitis-Salivarius bacitracin agar plate for enumeration of viable S. mutans by counting colony forming units. Planktonic S. mutans showed susceptibility to all of the extracts and S. mutans biofilm exhibited the highest level of sensitivity for the extracts of S. flavescens. The normal oral streptococci exhibited a weak susceptibility in comparison to S. mutans. S. oralis, however, was resistant to all of the extracts. In conclusion, the extract of S. flavescens may be a potential candidate for prevention and management of dental caries.  相似文献   

19.
Abstract

Dental plaque is a biofilm composed of a complex oral microbial community. The accumulation of plaque in the pit and fissures of dental elements often leads to the development of tooth decay (dental caries). Here, potent anti-biofilm materials were developed by incorporating zinc methacrylates or di-n-butyl-dimethacrylate-tin into the light-curable sealant and their physical, mechanical, and biological properties were evaluated. The data revealed that 5% di-n-butyl-dimethacrylate-tin (SnM 5%) incorporated sealant showed strong anti-biofilm efficacy against various single-species (Streptococcus mutans or Streptococcus oralis or Candida albicans) and S. mutans-C. albicans cross-kingdom dual-species biofilms without either impairing the mechanical properties of the sealant or causing cytotoxicities against mouse fibroblasts. The findings indicate that the incorporation of SnM 5% in the experimental pit and fissure self-adhesive sealant may have the potential to be part of current chemotherapeutic strategies to prevent the formation of cariogenic oral biofilms that cause dental caries.  相似文献   

20.
Lactoferrin (LF) is a component of saliva and is suspected to be a defense factor against oral pathogens including Streptococcus mutans and Candida albicans. Periodontitis is a very common oral disease caused by periodontopathic bacteria. Antimicrobial activities and other biological effects of LF against representative periodontopathic bacteria, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Prevotella intermedia, have been widely studied. Association of polymorphisms in LF with incidence of aggressive periodontitis and the role of LF in the gingival crevicular fluid as a marker of periodontitis severity have also been reported. Periodontopathic bacteria reside as a biofilm in supragingival and subgingival plaque. Our recent study indicated that LF exhibits antibacterial activity against planktonic forms of P. gingivalis and P. intermedia at higher concentrations, and furthermore, LF effectively inhibits biofilm formation and reduces the established biofilm of these bacteria at physiological concentrations. A small-scale clinical study indicated that oral administration of bovine LF reduces P. gingivalis and P. intermedia in the subgingival plaque of chronic periodontitis patients. LF seems to be a biofilm inhibitor of periodontopathic bacteria in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号