首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation-induced lipid peroxidation in phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100 per cent, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death.  相似文献   

2.
Intermembrane transfer and exchange of tocopherol are not well understood. To study this we tested the ability of alpha-tocopherol containing unilamellar donor liposomes to inhibit the accumulation of lipid peroxidation products in acceptor liposomes. With molar ratios of alpha-tocopherol:phospholipids from 1:100 to 1:1000 in donor liposomes prepared by sonication of lipid dispersions, alpha-tocopherol was incorporated into both monolayers and was homogenously distributed in monomeric form without forming clusters in the liposomes. Concentrations of alpha-tocopherol which completely prevented the peroxidation of lipids were chosen for donor liposomes. Hence inhibition of lipid peroxidation in mixtures of donor and acceptor liposomes was determined by the antioxidant effect of alpha-tocopherol in acceptor liposomes which resulted from intermembrane transfer and exchange of alpha-tocopherol. Evidence was obtained that this was not due to fusion of donor with acceptor liposomes. The efficiency of the "intermembrane" antioxidant action of tocopherol was more pronounced when donor liposomes contained unsaturated phospholipids, indicating that the presence of unsaturated fatty acids in the outer monolayer phospholipids facilitates intermembrane tocopherol exchange.  相似文献   

3.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in H(II) phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and H(II) phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the H(II) phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

4.
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (HII phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the HII phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in HII phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and HII phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the HII phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.  相似文献   

5.
Free radicals, formed via different mechanisms, induce peroxidation of membrane lipids. This process is of great importance because it modifies the physical properties of the membranes, including its permeability to different solutes and the packing of lipids and proteins in the membranes, which in turn, influences the membranes’ function. Accordingly, much research effort has been devoted to the understanding of the factors that govern peroxidation, including the composition and properties of the membranes and the inducer of peroxidation. In view of the complexity of biological membranes, much work was devoted to the latter issues in simplified model systems, mostly lipid vesicles (liposomes). Although peroxidation in model membranes may be very different from peroxidation in biological membranes, the results obtained in model membranes may be used to advance our understanding of issues that cannot be studied in biological membranes. Nonetheless, in spite of the relative simplicity of peroxidation of liposomal lipids, these reactions are still quite complex because they depend in a complex fashion on both the inducer of peroxidation and the composition and physical properties of the liposomes. This complexity is the most likely cause of the apparent contradictions of literature results. The main conclusion of this review is that most, if not all, of the published results (sometimes apparently contradictory) on the peroxidation of liposomal lipids can be understood on the basis of the physico-chemical properties of the liposomes. Specifically: (1) The kinetics of peroxidation induced by an “external” generator of free radicals (e.g. AAPH) is governed by the balance between the effects of membrane properties on the rate constants of propagation (k p) and termination (k t) of the free radical peroxidation in the relevant membrane domains, i.e. in those domains in which the oxidizable lipids reside. Both these rate constants depend similarly on the packing of lipids in the bilayer, but influence the overall rate in opposite directions. (2) Peroxidation induced by transition metal ions depends on additional factors, including the binding of metal ions to the lipid–water interface and the formation of a metal ions-hydroperoxide complex at the surface. (3) Reducing agents, commonly regarded as “antioxidants”, may either promote or inhibit peroxidation, depending on the membrane composition, the inducer of oxidation and the membrane/water partitioning. All the published data can be explained in terms of these (quite complex) generalizations. More detailed analysis requires additional experimental investigations. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

6.
Liposomes were prepared from phospholipids extracted from biological membranes. A comparison was made between the peroxidation rate in handshake liposomes and in sonicated liposomes. The smaller sonicated liposomes were more vulnerable to peroxidation, probably because of the smaller radius of curvature, which results in a less dense packing of lipid molecules in the bilayer and a facilitated action of water radicals produced by the X-irradiation. High oxygen enhancement ratios were obtained, especially at low dose rates, suggesting the operation of slowly progressing chain reactions initiated by ionizing radiation. Three compounds were tested for their ability to protect the liposomal membranes against lipid peroxidation. The naturally occurring compounds reduced glutathione (GSH) and vitamin E(alpha-T) and the powerful radiation protector cysteamine (MEA). All three molecules could protect the liposomes against peroxidation. The membrane-soluble compound vitamin E was by far the most powerful. About 50 per cent protection was achieved by using 5 X 10(-6) M alpha-T, 10(-4) M GSH and 5 X 10(-4) M MEA. The fatty acid composition of the lipids altered drastically as a result of the irradiation. Arachidonic acid and docosahexanoic acid were the most vulnerable of the fatty acids. Very efficient protection of these polyunsaturated fatty acids could be obtained with relatively low concentrations of vitamin E built into the membranes.  相似文献   

7.
Rat lung microsomes and liposomes made from isolated lung microsomal lipids were found to be much more resistant to lipid peroxidation than those from liver in both enzymatic and nonenzymatic systems. The polyunsaturated fatty acid (PUFA) content of isolated lung microsomal lipids was 28% of total fatty acids, while liver was 54%. The vitamin E (α-tocopherol) content of isolated lung microsomal lipids was 2.13 nmol/μmol lipid phosphate and that of liver was 0.43. Individually, neither the lower PUFA content nor higher vitamin E levels could account for the resistance of lung microsomal lipids to peroxidation. Distearoyl-L-a-phosphatidylcholine and/or α-tocopherol were added to liver microsomal lipids to achieve different PUFA to vitamin E ratios at PUFA contents of 28% or 54%, and the resulting liposomes were subjected to an NADPH-dependent lipid peroxidation system utilizing cytochrome P450 reductase, EDTA-Fe+3, and ADP-Fe+3. Liposomes having PUFA to vitamin E ratios less than approximately 250 nmol PUFA/nmol vitamin E were resistant to peroxidation, whereas lipid peroxidation, as evidenced by malondialdehyde production, occurred in liposomes having higher ratios. When lipid peroxidation occurred, 40%–60% of the liposomal vitamin E was irreversibly oxidized. Irreversible oxidation did not occur in the absence of lipid peroxidation. These studies indicated that the low PUFA to vitamin E ratio in lung microsomes and isolated microsomal lipids was sufficient to account for the observed resistance to lipid peroxidation.  相似文献   

8.
Abstract

Photosensitive lipids and liposomes may be designed by a variety of strategies. These include the photochemical modification of individual lipids in the bilayer; the photoinduced change in the association of polyelectrolytes with liposomes; and the photoinitiated polymerization of some or all of the lipids in the liposome. The interaction of light with photosensitive liposomes can cause bilayer reorganization with possible applications in imaging, sensing, as well as therapeutics. The latter is the focus of this review.  相似文献   

9.
The interaction of liposomes derived from total lipids of mouse spleen and liver with mouse spleen cells was studied. It was shown that the binding of these liposomes is much higher than the binding of liposomes obtained from a model lipid mixture--phosphatidylcholine--phosphatidylethanolamine--cholesterol (2:1:1). Adherent and nonadherent spleen cells were found to have affinity for liposomes derived from total lipids of spleen or liver. Removal of gangliosides and protein contaminants from the liposomes derived from total spleen lipids caused an increased binding of liposomes to spleen cells. Multilamellar liposomes bound more effectively to ultrasonicated vesicles having a homologous lipid composition than the liposomes with a different lipid composition. The increased affinity of liposomes derived from total lipids of spleen or liver for spleen cells may account for the identical fluidity of the lipid bilayer of liposomes and plasma membranes of spleen cells.  相似文献   

10.
The structural effect of the presequence of cytochrome oxidase subunit IV (p25) on multilamellar liposomes with different lipid compositions has been investigated using X-ray diffraction and electron microscopy. The presequence causes the disordering of the liposomes containing negatively charged lipids, without destabilizing the bilayer structure or destroying the multilamellar nature of the liposomes. In the systems containing only zwitterionic lipids, a small increase in the d-spacing (lamellar stacking spacing) is observed without any disorder effect suggesting a weaker interaction of the peptide and lipid. Circular Dichroism measurements of the peptide, in the presence and absence of the different lipid systems studied, show that the secondary structure of the peptide is modulated by the lipid environment. Considerable amounts of -helix in the presequence is only observed in the systems containing negatively charged lipids. These are the same systems for which the disordering effect is observed with X-ray diffraction. It is proposed that p25 disorders the bilayer stacking by corrugating the membranes. The results are discussed in terms of the relevance of the specific lipid properties (e.g., electric charge and ability to form inverted phases) in determining how the peptide interacts with the lipid and affects its structural organization. It is suggested that the lipid properties relevant for the disordering effect induced by the peptide are the same as those involved in the formation of contact sites between mitochondrial membranes during the import of nuclear coded proteins.  相似文献   

11.
Hemolysis (Kobayashi, T., Takahashi, K., Yamada, A., Nojima, S. and Inoue, K. (1983) J. Biochem. 93, 675-680) and shedding of acetylcholinesterase-enriched membrane vesicles (diameter 150-200 nm) were observed when human erythrocytes were incubated with liposomes of phosphatidylcholine which contained polyunsaturated fatty acyl chains. These events occurring on erythrocyte membrane were inhibited by radical scavengers or incorporation of alpha-tocopherol into liposomes, suggesting that lipid peroxidation is involved in the process leading to membrane vesiculation and hemolysis. The idea was supported by findings that generation of chemiluminescence, formation of thiobarbituric acid reactive substance, accumulation of conjugated diene compounds in liposomes and decrease of polyunsaturated fatty acids in liposomes occurred concomitantly during incubation. Hemolysis was also suppressed by the addition of extra liposomes, insensitive to peroxidation, or of serum albumin even after the completion of peroxidation of liposomes. These results suggest that peroxidized lipids, responsible for vesiculation and hemolysis, may be formed first in liposomes and then gradually transferred to erythrocyte membranes. The accumulation of these lipids peroxides may eventually cause membrane vesiculation followed by hemolysis.  相似文献   

12.
We have studied the partitioning of a set of phenolic compounds used as lignin precursor models into lipid bilayer disks and liposomes. The bilayer disks are open bilayer structures stabilized by polyethylene glycol-conjugated lipids. Our results indicate that disks generate more accurate partition data than do liposomes. Furthermore, we show that the partitioning into the membrane phase is reduced slightly if disks composed of 1,2-distearoyl-sn-glycero-3-phosphocholine and cholesterol are exchanged for disks with a lipid composition mimicking that of the root tissue of Zea mays L.  相似文献   

13.
The incubation of microsomes damaged by Fe2+--ascorbate-dependent lipid peroxidation with phosphatidylcholine liposomes and micelles is accompanied by the rate decrease of the reduced cytochrome P450 inactivation in microsome membranes. It indicates the elimination of lipid bilayer injuries. The results of study of the saturation degree, surface charge and size of liposomes and micelles influence on the ability to reconstruct the damaged lipid bilayer are presented.  相似文献   

14.
Co2+ inhibited nonenzymatic iron chelate-dependent lipid peroxidation in dispersed lipids, such as ascorbate-supported lipid peroxidation, but not iron-independent lipid peroxidation. Histidine partially abolished the Co2+ inhibition of the iron-dependent lipid peroxidation. The affinity of iron for phosphatidylcholine liposomes in Fe(2+)-PPi-supported systems was enhanced by the addition of an anionic lipid, phosphatidylserine, and Co2+ competitively inhibited the peroxidation, while the inhibiting ability of Co2+ as well as the peroxidizing ability of Fe(2+)-PPi on liposomes to which other phospholipids, phosphatidylethanolamine, or phosphatidylinositol had been added was reduced. Co2+ inhibited microsomal NADPH-supported lipid peroxidation monitored in terms of malondialdehyde production and the peroxidation monitored in terms of oxygen consumption. The inhibitory action of Co2+ was not associated with iron reduction or NADPH oxidation in microsomes, suggesting that Co2+ does not affect the microsomal electron transport system responsible for lipid peroxidation. Fe(2+)-PPi-supported peroxidation of microsomal lipid liposomes was markedly inhibited by Co2+.  相似文献   

15.
The aim of this work was to study interactions between cationic carbosilane dendrimers (CBS) and lipid bilayers or monolayers. Two kinds of second generation carbosilane dendrimers were used: NN16 with Si-O bonds and BDBR0011 with Si-C bonds. The results show that cationic carbosilane dendrimers interact both with liposomes and lipid monolayers. Interactions were stronger for negatively charged membranes and high concentration of dendrimers. In liposomes interactions were studied by measuring fluorescence anisotropy changes of fluorescent labels incorporated into the bilayer. An increase in fluorescence anisotropy was observed for both fluorescent probes when dendrimers were added to lipids that means the decreased membrane fluidity. Both the hydrophobic and hydrophilic parts of liposome bilayers became more rigid. This may be due to dendrimers' incorporation into liposome bilayer. For higher concentrations of both dendrimers precipitation occurred in negatively charged liposomes. NN16 dendrimer interacted stronger with hydrophilic part of bilayers whereas BDBR0011 greatly modified the hydrophobic area. Monolayers method brought similar results. Both dendrimers influenced lipid monolayers and changed surface pressure. For negatively charged lipids the monitored parameter changed stronger than for uncharged DMPC lipids. Moreover, NN16 dendrimer interacted stronger than the BDBR0011.  相似文献   

16.
Lysosomes, enveloped viruses, as well as synaptic and secretory vesicles are all examples of natural nanocontainers (diameter ≈ 100 nm) which specifically rely on their lipid bilayer to protect and exchange their contents with the cell. We have applied methods primarily based on atomic force microscopy and finite element modeling that allow precise investigation of the mechanical properties of the influenza virus lipid envelope. The mechanical properties of small, spherical vesicles made from PR8 influenza lipids were probed by an atomic force microscopy tip applying forces up to 0.2 nN, which led to an elastic deformation up to 20%, on average. The liposome deformation was modeled using finite element methods to extract the lipid bilayer elastic properties. We found that influenza liposomes were softer than what would be expected for a gel phase bilayer and highly deformable: Consistent with previous suggestion that influenza lipids do not undergo a major phase transition, we observe that the stiffness of influenza liposomes increases gradually and weakly (within one order of magnitude) with temperature. Surprisingly, influenza liposomes were, in most cases, able to withstand wall-to-wall deformation, and forces >1 nN were generally required to puncture the influenza envelope, which is similar to viral protein shells. Hence, the choice of a highly flexible lipid envelope may provide as efficient a protection for a viral genome as a stiff protein shell.  相似文献   

17.
Y Barenholz  N F Moore  R R Wagner 《Biochemistry》1976,15(16):3563-3570
The fluorescence probe 1,6-diphenyl-1,3,5-hexatriene was used to study and compare the dynamic properties of the hydrophobic region of vesicular stomatitis virus grown on L-929 cells, plasma membrane of L-929 cells prepared by two different methods, liposomes prepared from virus lipids and plasma membrane lipids, and intact L-929 cells. The rate of penetration of the probe into the hydrophobic region of the lipid bilayer was found to be much faster in the lipid vesicle bilayer as compared with the intact membrane, but in all cases the fluorescence anisotropy was constant with time. The L-cell plasma membranes, the vesicles prepared from the lipids derived from the plasma membranes, and intact cells are found to have much lower microviscosity values than the virus or virus lipid vesicles throughout a wide range of temperatures. The microviscosity of plasma membrane and plasma membrane lipid vesicles was found to depend on the procedure for plasma membrane preparation as the membranes prepared by different methods had different microviscosities. The intact virus and liposomes prepared from the virus lipids were found to have very similar microviscosity values. Plasma membrane and liposomes prepared from plasma membrane lipids also had similar microviscosity values. Factors affecting microviscosity in natural membranes and artificially mixed lipid membranes are discussed.  相似文献   

18.
Preservation of freeze-dried liposomes by trehalose   总被引:13,自引:0,他引:13  
One of the practical difficulties with the frequently proposed use of liposomes for delivery of water-soluble substances to cells in whole organisms is that liposomes are relatively unstable during storage. We have studied the ability of trehalose, a carbohydrate commonly found at high concentrations in organisms capable of surviving dehydration, to stabilize dry liposomes. With trehalose both inside and outside the bilayer, almost 100% of trapped solute was retained in rehydrated vesicles previously freeze-dried with 1.8 g trehalose/g dry phospholipid. Trehalose is very effective at inhibiting fusion between liposomes during drying, as assessed by freeze-fracture and resonance energy transfer between fluorescent probes incorporated into the bilayer. However, inhibition of fusion alone does not account for the preservation of the dry liposomes, since the concentration of trehalose required to prevent leakage is more than 10-fold that required to prevent fusion. We provide evidence that stabilization of the dry liposomes requires depression of transition temperature and consequent maintenance of the constituent lipids in the dry liposomes in a liquid crystalline phase.  相似文献   

19.
Lipid peroxidation is believed to play an important role in the pathogenesis of many diseases. Much research has therefore been devoted to peroxidation of different lipids in biomembranes and in model systems (liposomes) of different compositions. Yet, in spite of the relative simplicity of the liposomes, the existing literature is insufficient to reach definite conclusions regarding basic questions including the susceptibility of cholesterol to oxidation, its effect on the peroxidation of polyunsaturated phospholipids such as palmitoyllinoleoylphosphatidylcholine (PLPC) and how cholesterol influences the effect of water-soluble antioxidants such as urate on the peroxidation. The aim of the present study was to clarify these issues. Its major findings are that: (i) AAPH-induced peroxidation of cholesterol is slow and independent of the peroxidation of PLPC. In turn, AAPH-induced peroxidation of PLPC is not affected by cholesterol, independent of the presence of urate in the system. (ii) Cholesterol is not susceptible to copper-induced oxidation, but its inclusion in PLPC liposomes affects the peroxidation of PLPC, slowing down the initial stage of oxidation but promoting later stages. (iii) Addition of urate accelerates copper-induced peroxidation of PLPC in the absence of cholesterol, whereas in cholesterol-containing liposomes it inhibits PLPC oxidation. We attribute the complexity of the observed kinetics to the known cholesterol-induced rigidization of liquid crystalline bilayers.  相似文献   

20.
Second harmonic generation (SHG) was used to study both the adsorption of malachite green (MG), a positively charged organic dye, onto liposomes of different lipid compositions, and the transport kinetics of MG across the liposome bilayer in real time. We found that the dye adsorption increased linearly with the fraction of negatively charged lipids in the bilayer. Similarly, the transport rate constant for crossing the bilayer increased linearly with the fraction of charged lipid in the bilayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号