首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rélová M 《Mycologia》2007,99(5):723-732
The new genus Barbatosphaeria is described for a perithecial ascomycete known as Calosphaeria barbirostris occurring on decayed wood of deciduous trees under the periderm. The fungus produces nonstromatic perithecia with hyaline, 1-septate ascospores formed in unitunicate, nonamyloid asci. Anamorphs produced in vitro belong to Sporothrix and Ramichloridium with holoblastic-denticulate conidiogenesis; conidiophores of the two types were formed in succession during the development of the colony. Phylogenetic analyses of nuLSU rDNA sequences indicate that this fungus is distinct from morphologically similar Lentomitella, tentatively placed in the Trichosphaeriales. It groups with freshwater Aquaticola and Cataractispora and terrestrial Cryptadelphia in maximum parsimony analysis; the same grouping but without Cryptadelphia was inferred from Bayesian analysis. Cultivation, morphology and phylogenetic studies of the nuLSU rDNA support the erection of a new genus for C. barbirostris.  相似文献   

2.
3.
4.
Summary Two aerobic mesophilic species of a new genus belonging to the familyActinoplanaceae are described under the nameDactylosporangium (D. aurantiacum strainD/748 type species andD. thailandensis strainD/449). The new genus is characterized by the production of finger shaped sporangia emerging directly from the vegetative mycelium.The motile sporangiospores, three to four in number are arranged in a single straight row inside the sporangium.The genusActinoplanes of the familyActinoplanaceae was described in 1950 byCouch and is characterized by the bacteria-like, flagellated spores formed in sporangia. Other members of the familyActinoplanaceae have been studied byKarling (1954),Rothwell (1957) andCrosset al. (1963) in the United States, byGaertner (1955) in Germany, byVan Brummelen andWent (1957) in Holland, byNonomura andOhara (1960) in Japan, byTaiget al. (1962),Tsyganovet al. (1963), andKonievet al. (1965) in Russia. Except for the organisms studied byKarling and byRothwell, which undoubtedly belonged to theActinoplanes but were not studied in pure culture, the organisms studied by most of the other authors belonged to the genusStreptosporangium.Three new genera having motile spores were described more recently:Ampullariella andSpirillospora described byCouch (1963, 1964), andPlanomonospora byThiemannet al. (1967b).  相似文献   

5.
6.
A Gram-negative bacterium was previously isolated from an oil field in Shizuoka, Japan, and designated strain HD-1. Here we have performed detailed characterization of the strain, and have found that it represents a novel genus. The 16S rRNA sequence of strain HD-1 displayed highest similarity to various uncultured species (86.7-99.7%), along with 86.2-88.2% similarity to sequences from Azospirillum, Methylobacterium, Rhizobium, and Hyphomicrobium, all members of the alpha-Proteobacteria. Phylogenetic analysis revealed that HD-1 represented a deep-branched lineage among the alpha-Proteobacteria. DNA-DNA hybridization analysis with Azospirillum lipoferum and Hyphomicrobium vulgare revealed low levels of similarity among the strains. We further examined the biochemical properties of the strain under aerobic conditions. Among carbon sources, ethanol, n-propanol, n-butanol, and n-tetradecanol were the most preferred, while acetate, propionate, and pyruvate also supported high levels of growth. The strain could also grow on aromatic compounds such as toluene, benzene and phenol, and aliphatic hydrocarbons such as n-octane and n-tetradecane. In contrast, glycerol and various sugars, including glucose, fructose, maltose, and lactose, failed to support growth of HD-1. Under an anaerobic gas phase with butanol as the carbon source, little increase in cell weight was observed with the addition of several possible electron acceptors. As strain HD-1 represents a novel genus in the alpha-Proteobacteria, we designated the strain as Oleomonas sagaranensis gen. nov., sp. nov., strain HD-1.  相似文献   

7.
A Gram-negative aerobic bacterium, designated RR4-38T, was isolated from a biofilter in a seawater recirculating aqua-culture system (RAS) in Busan, South Korea. The bacteria were irregular, short, rod-shaped, non-motile, oxidase-positive, and catalase-negative. Growth of the strain RR4-38T was observed at 15–35·C (optimum, 25–30·C), pH 5.5–9.5 (optimum, pH 8.0), and in the presence of 0–5% (w/v) NaCl (optimum, 3%). Phylogenetic analysis based on the 16S rRNA gene sequences showed that the strain RR4-38T formed a distinct lineage with close genera Ulvibacter (≤ 95.01% 16S rRNA gene sequence similarity), Aureitalea (94.74%), Aureisphaera (≤ 93.27%), and Jejudonia (93.07%) that all belong to the family Flavobacteriaceae. Whole-genome sequence comparison revealed that the ANI (average nucleotide identity) and digital DDH (DNA-DNA hybridization) values between strain RR4-38T and the two closest strains, Ulvibacter antarcticus DSM 23424T and Aureitalea marina S1-66T, were 68.96–69.88% and 17.4–19%, respectively. The genome analysis revealed that the strain might be involved in biodegradation of organic debris produced by farmed fish in aquaculture systems. The predominant respiratory quinone was menaquinone MK-6 and the major cellular fatty acids were iso-C15:0 (26.5%), iso-C17:0 3-OH (16.4%), iso-C15:1 G (15%), and iso-C16:0 3-OH (9.6%). The major cellular polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, unidentified aminolipids, and glycolipids. Based on phenotypic, chemotaxonomic, and phylogenetic features, strain RR4-38t represents a novel genus and species in the family Flavobacteriaceae, for which the name Pukyongia salina gen. nov., sp. nov. is proposed. The type strain is RR4-38T (= KCTC 52651T = DSM 108068T).  相似文献   

8.
Summary A new species of a new genus of the Actinoplanaceae is described, for which the name Planobispora longispora gen. nov. sp. nov. is proposed. The organism is a typical mesophilic, aerobic actinomycete, producing a filamentous growth which is differentiated into a vegetative and an aerial mycelium. The new organism is characterized by the formation of sporangia only on the aerial mycelium and by containing a longitudinal pair of motile spores.  相似文献   

9.
Two strains, JW 200 and JW 201, of an extreme thermophilic, non-spore-forming anaerobic bacterium were isolated from alkaline and slightly acidic hot springs located in Yellowstone National Park. Both strains were peritrichously flagellated rods. Cell size varied from 0.5–0.8 by 4–100 m; coccoid-shaped cells of about 1 m in diameter frequently occurred. Division was often unequal. Spheroplast-like forms were visible at the late logarithmic growth phase. The Gram reaction was variable. The DNA base composition of the two strains was between 37 and 39 mol% guanine plus cytosine as determined by buoyant density measurements and approximately 32% by the thermal denaturation method. The main fermentation products from hexoses were ethanol and CO2. Growth occurred between 37 and 78°C and from pH 4.4 to 9.8. The name Thermoanaerobacter ethanolicus gen. nov., spec. nov. was proposed for the two, new isolates. Strain JW 200 was designated as the type strain.A preliminary account of this work was presented at the annual meeting of the American Society for Microbiology, Los Angeles, CA, 1979 (J. Wiegel and L. G. Ljungdahl, Abstr. Annu. Meet. Am. Soc. Microbiol., 1979, 163, p. 105) and at the 27th IUPAC Congress Helsinki, 1979 (L. G. Ljungdahl and J. Wiegel, Abstracts p. 546)  相似文献   

10.
The name Yokenella gen. nov. is proposed for a group of organisms in the family Enterobacteriaceae isolated from clinical sources and insects. Yokenella is a gram-negative, oxidase-negative, fermentative, motile rod possessing the characteristics of the family Enterobacteriaceae and the guanine plus cytosine contents of the DNA range from 58.0 to 59.3 mol%. Biochemical characteristics of this group and DNA hybridization studies indicate that the 11 strains studied here comprise a separate species which should be best placed in a new genus. This single DNA hybridization group is named Yokenella regensburgei sp. nov. The type strain of Y. regensburgei is NIH 725-83 (JCM 2403).  相似文献   

11.
12.
J J Gold  I B Heath  T Bauchop 《Bio Systems》1988,21(3-4):403-415
Vegetative and reproductive stages of Caecomyces equi gen. nov., sp. nov. isolated from the horse caecum were examined by light and electron microscopy. This organism, which is similar to isolates known as Sphaeromonas communis, produces uniflagellate, uninucleate zoospores whose perikinetosomal structures, i.e. circumflagellar ring, spur, struts and scoop, are similar in many respects to those described in species of Neocallimastix. Microtubular roots extend basally from the spur and associate with hydrogenosomes and the nucleus. Another group of microtubules radiates laterally in a fan-shaped array close to the plasmalemma. Zoospores encyst, shedding their flagella with basal bodies, and germinate to diglobular thalli. Either coralloid or bulbous rhizoids form in plant material, but only the latter in axenic culture. Incipient zoospores are produced from a multinucleate eucarpic thallus and devlop within cleavage vacuoles containing flagella. An isolate from the cow rumen was found to be similar to C. equi in morphology and zoospore ultrastructure. On the basis of zoospore ultrastructure, we assign the new genus to the Neocallimasticaceae of the order Spizellomycetales. Organisms previously described as Sphaeromonas communis and Piromonas communis are renamed Caecomyces communis and Piromyces communis and assigned to the same family.  相似文献   

13.
14.
On the basis of phenotypical characteristics and analysis of 16S rRNA sequence, a new species belonging to a new genus is described, and the name Marinobacter hydrocarbonoclasticus is proposed. This organism, isolated from Mediterranean seawater near a petroleum refinery, is a gram-negative, aerobic, rod-shaped bacterium. It grows at NaCl concentrations of 0.08 to 3.5 M and uses various hydrocarbons as the sole source of carbon and energy. Its DNA has a guanine-plus-cytosine content of 52.7 mol%. The 16S rRNA analysis shows a clear affiliation between M. hydrocarbonoclasticus and the gamma group of the phylum Proteobacteria. A close phylogenetic relationship appears among the species Marinomonas vaga, Oceanospirillum linum, Halomonas elongata, and Pseudomonas aeruginosa. Because of the impossibility of finding a single most closely related species, we suggest that this bacterium be assigned to a new genus, at least temporarily. The possibility of a revision of this status when new data appear is, however, not excluded. The type strain is M. hydrocarbonoclasticus SP.17 (= ATCC 49840).  相似文献   

15.
A bacterial strain (CCUG 44693T) was recovered during an industrial hygiene control. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that it represents a new lineage in the alpha-1 subclass of the Proteobacteria, with the highest sequence similarity of 93.3% to the type strain of Muricoccus roseus. In the polyamine pattern spermidine was the predominant compound. The polar lipid profile consisted of the major lipids phosphatidyl ethanolamine, phosphatidyl dimethylethanolamine, phosphatidyl glycerol, phosphatidyl cholin and an unknown amino lipid. The major respiratory quinone was a ubiquinone Q-10 and the major whole cell fatty acids were 19:0 cyclo omega8c and 18:1 omega7c. The isolate also contained 18:1 2-OH and other fatty acids typical for members of the alpha-1 subclass of the Proteobacteria in addition to 10:0 2-OH in low amounts, not detected in members of closely related genera. The strain grew heterotrophically and strictly aerobically and formed red-colored colonies on tryptone soy agar. Bacteriochlorophyll a could not be detected by direct spectrophotometric analyses of aerobically grown cells. On the basis of the phylogenetic analyses, chemotaxonomic and biochemical characteristics, we propose that strain CCUG 44693T (CIP 108310T) represents a new genus of the alpha-1 subclass of the Proteobacteria for which we propose the name Rhodovarius lipocyclicus gen. nov. sp. nov.  相似文献   

16.
A polyphasic approach was used in which genotypic and phenotypic properties of a gram-negative, obligately anaerobic, rod-shaped bacterium isolated from a black anoxic freshwater mud sample were determined. Based on these results, the name Holophaga foetida gen. nov., sp. nov. is proposed. This microorganism produced dimethylsulfide and methanethiol during growth on trimethoxybenzoate or syringate. The only other compounds utilized were pyruvate and trihydroxybenzenes such as gallate, phloroglucinol, or pyrogallol. The aromatic compounds were degraded to acetate. Although comparison of the signature nucleotide pattern of the five established subclasses of Proteobacteria with the 16S rDNA sequence of Holophaga foetida revealed a relationship to members of the -subclass, the phylogenetic position within the radiation of this class is so deep and dependent upon the number and selection of reference sequences that its affiliation to the Proteobacteria must be considered tentative. The type strain is H. foetida strain TMBS4 (DSM 6591).F. Bak died on 27 December 1992. A very promising and productive career thus ended much too early  相似文献   

17.
A new funnel-web spider genus, Acutipetala, gen. nov., is erected to accommodate two new agelenid species known to occur in evergreen forests of northern Thailand: Acutipetala octoginta, sp. nov. (type species,male symbolfemale symbol) and A. donglini, sp. nov. (male symbol). The genus is established on the basis of the distinctive appearance of the genital structures, in which the median apophysis of the male palp is petal-shaped, sharply pointed, and strongly sclerotized, and the truncate embolus is short, originates subapically, and is provided with a hook-shaped apical portion.  相似文献   

18.
19.
Anaerobic enrichment cultures, with erythritol as substrate, resulted in the isolation of a strain with properties not yet found in an existing genus in this combination. The strain, FKBS1, was strictly anaerobic, stained gram-negative and formed spores. Cells were small motile vibrios with flagella inserted at the concave side of the cell. Spores were located terminally and caused only slight swelling of the cells if compared to related spore-forming genera. FKBS1 fermented fructose, mannitol, sorbitol, xylitol and erythritol to propionic acid, acetic acid, CO2 and small amounts of H2 to balance the difference in the oxidation-reduction value between substrate and cell mass. The 16S rDNA sequence revealed relationship to the Sporomusa-Pectinatus-Selenomonas group. However, the phylogenetic distance to any of its members was too great to allow it to be placed in one of the existing genera. Morphologically the strain resembled Sporomusa, which, however, performs an acetogenic type of fermentation. The propionic-acid-forming genera of the group are either not spore-formers or, in the case of Dendrosporobacter quercicolus (syn. Clostridium quercicolum), morphologically different. It is therefore proposed to classify strain FKBS1 as a new genus and species, Propionispora vibrioides.  相似文献   

20.
A new species of extremely thermophilic, glycolytic anaerobic bacterium, Fervidobacterium nodosum isolated from a New Zealand hot spring, is described. Fervidobacterium nodosum strains were Gram-negative, motile, non-sporulating obligately anaerobic rods that existed singly, in pairs or in chains. Electron micrographs of thin sections revealed a two-layered cell wall structure. The outer layer of the cell wall produced spheroids, which was a typical feature of this organism. The optimum temperature for growth was 65 to 70° C, the maximum 80° C and the minimum greater than 40° C. Growth occurred between a pH of 6.0 and 8.0 with the optimum being 7.0 to 7.5. The doubling time of Fervidobacterium nodosum at optimal temperature and pH was 105 minutes. The DNA base composition was 33.7% guanine plus cytosine as determined by thermal denaturation. A wide range of carbohydrates including glucose, sucrose, starch and lactose could be utilized by the organism. Lactate, acetate, hydrogen, and carbon dioxide were the major end products of glucose fermentation with lesser amounts of ethanol being formed. Growth was inhibited by tetracycline, penicillin and chloramphenicol indicating that the organism was a eubacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号