首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Intricate interactions between the Wnt and Bmp signaling pathways pattern the gastrulating vertebrate embryo using a network of secreted protein ligands and inhibitors. While many of these proteins are expressed post-gastrula, their later roles have typically remained unclear, obscured by the effects of early perturbation. We find that Bmp signaling continues during somitogenesis in zebrafish embryos, with high activity in a small region of the mesodermal progenitor zone at the posterior end of the embryo. To test the hypothesis that Bmp inhibitors expressed just anterior to the tailbud are important to restrain Bmp signaling we produced a new zebrafish transgenic line, allowing temporal cell-autonomous activation of Bmp signaling and thereby bypassing the effects of the Bmp inhibitors. Ectopic activation of Bmp signaling during somitogenesis results in severe defects in the tailbud, including altered morphogenesis and gene expression. We show that these defects are due to non-autonomous effects on the tailbud, and present evidence that the tailbud defects are caused by alterations in Wnt signaling. We present a model in which the posteriorly expressed Bmp inhibitors function during somitogenesis to constrain Bmp signaling in the tailbud in order to allow normal expression of Wnt inhibitors in the presomitic mesoderm, which in turn constrain the levels of canonical and non-canonical Wnt signaling in the tailbud.  相似文献   

2.
Cell polarity plays a critical role in the development of all metazoans; however, the mechanisms of cell polarity and the specific role of cell polarity pathways in mammalian organisms are still poorly understood. Lethal giant larvae (Lgl) is an apical-basal polarity gene identified in Drosophila, where it functions as a tumor suppressor controlling self-renewal and differentiation of progenitor cells. There are two orthologs of Lgl in mammalian genomes: Llgl1 and Llgl2. While mammalian Lgls are assumed to be tumor suppressor genes, little is known about their function in vivo. Here we report the functional analysis of murine Llgl2. We generated Llgl2(-/-) mice and found that Llgl2 functions as a polarity protein required for proper branching morphogenesis during placental development. Llgl2(-/-) pups are born as runts but quickly catch up in size and grow into normal-size adults. Surprisingly, no prominent phenotypes or spontaneous tumors were observed in adult Llgl2(-/-) mice. Analyses of placental trophoblasts reveal a critical role for Llgl2 in cell polarization and polarized cell invasion. We conclude that mammalian Llgl2 is required for proper polarized invasion of trophoblasts and efficient branching morphogenesis during placental development, but, unlike its Drosophila ortholog, it does not function as a canonical tumor suppressor gene.  相似文献   

3.
Damages of sensory hair cells(HCs) are mainly responsible for sensorineural hearing loss, while the pathological mechanism remains not fully understood due to the many potential deafness genes unidentified. ftr82, a member of the largely TRIMs family in fish, has been found specifically expressed in the otic vesicle while its function is still unclear. Here, we investigate the roles of ftr82 in HC development and hearing function utilizing the zebrafish model. The results of in situ hybridizatio...  相似文献   

4.
Coronin plays a major role in the organization and dynamics of actin in yeast. To investigate the role of coronin in a filamentous fungus (Neurospora crassa), we examined its subcellular localization using fluorescent proteins and the phenotypic consequences of coronin gene (crn-1) deletion in hyphal morphogenesis, Spitzenk?rper behavior and endocytosis. Coronin-GFP was localized in patches, forming a subapical collar near the hyphal apex; significantly, it was absent from the apex. The subapical patches of coronin colocalized with fimbrin, Arp2/3 complex, and actin, altogether comprising the endocytic collar. Deletion of crn-1 resulted in reduced hyphal growth rates, distorted hyphal morphology, uneven wall thickness, and delayed establishment of polarity during germination; it also affected growth directionality and increased branching. The Spitzenk?rper of Δcrn-1 mutant was unstable; it appeared and disappeared intermittently giving rise to periods of hyphoid-like and isotropic growth respectively. Uptake of FM4-64 in Δcrn-1 mutant indicated a partial disruption in endocytosis. These observations underscore coronin as an important component of F-actin remodeling in N. crassa. Although coronin is not essential in this fungus, its deletion influenced negatively the operation of the actin cytoskeleton involved in the orderly deployment of the apical growth apparatus, thus preventing normal hyphal growth and morphogenesis.  相似文献   

5.
Remodeling of the extracellular matrix (ECM) is pivotal for various biological processes, including organ morphology and development. The Caenorhabditis elegans male tail has male-specific copulatory organs, the rays and the fan. Ray morphogenesis, which involves a rapid remodeling of the ECM, is an important model of morphogenesis, although its mechanism is poorly understood. ADAMTS (a disintegrin-like and metalloproteinase with thrombospondin type I motifs) is a novel metalloproteinase family that is thought to be an important regulator for ECM remodeling during development and pathological states. We report here that a new C. elegans ADAMTS family gene, adt-1, plays an important regulatory role in ray morphogenesis. Inactivation of the adt-1 gene resulted in morphological changes in the rays as well as the appearance of abnormal protuberances around the rays. In addition, mating ability was remarkably impaired in adt-1 deletion mutant males. Furthermore, we found that the green fluorescent protein reporter driven by the adt-1 promoter was specifically expressed throughout the rays in the male tail. We hypothesize that ADT-1 controls the ray extension process via remodeling of the ECM in the cuticle.  相似文献   

6.
The formation of the vertebrate optic cup is a morphogenetic event initiated after the optic vesicle contacts the overlying surface/pre-lens ectoderm. Placodes form in both the optic neuroepithelium and lens ectoderm. Subsequently, both placodes invaginate to form the definitive optic cup and lens, respectively. We examined the role of the lens tissue in inducing and/or maintaining optic cup invagination in ovo. Lens tissue was surgically removed at various stages of development, from pre-lens ectoderm stages to invaginating lens placode. Removal of the pre-lens ectoderm resulted in persistent optic vesicles that initiated neural retinal differentiation but failed to invaginate. In striking contrast, ablation of the lens placode gave rise to optic vesicles that underwent invagination and formed the optic cup. The results suggest that: (1) the optic vesicle neuroepithelium requires a temporally specific association with pre-lens ectoderm in order to undergo optic cup morphogenesis; and (2) the optic cup can form in the absence of lens formation. If ectopic BMP is added, a neural retina does not develop and optic cup morphogenesis fails, although lens formation appears normal. FGF-induced neural retina differentiation in the absence of the pre-lens ectoderm is not sufficient to create an optic cup. We hypothesize the presence of a signal coming from the pre-lens ectoderm that induces the optic vesicle to form an optic cup.  相似文献   

7.
《Journal of biomechanics》2014,47(16):3837-3846
Precise shaping of the eye is crucial for proper vision. Here, we use experiments on chick embryos along with computational models to examine the mechanical factors involved in the formation of the optic vesicles (OVs), which grow outward from the forebrain of the early embryo. First, mechanical dissections were used to remove the surface ectoderm (SE), a membrane that contacts the outer surfaces of the OVs. Principal components analysis of OV shapes suggests that the SE exerts asymmetric loads that cause the OVs to flatten and shear caudally during the earliest stages of eye development and later to bend in the caudal and dorsal directions. These deformations cause the initially spherical OVs to become pear-shaped. Exposure to the myosin II inhibitor blebbistatin reduced these effects, suggesting that cytoskeletal contraction controls OV shape by regulating tension in the SE. To test the physical plausibility of these interpretations, we developed 2-D finite-element models for frontal and transverse cross-sections of the forebrain, including frictionless contact between the SE and OVs. With geometric data used to specify differential growth in the OVs, these models were used to simulate each experiment (control, SE removed, no contraction). For each case, the predicted shape of the OV agrees reasonably well with experiments. The results of this study indicate that differential growth in the OV and external pressure exerted by the SE are sufficient to cause the global changes in OV shape observed during the earliest stages of eye development.  相似文献   

8.
A detailed embryological analysis has been undertaken on embryos carrying the c4FR60Hd-, c5FR60Hg- or c2YPSj-albino deletions of mouse chromosome 7. Embryos homozygous for the c4FR60Hd deletion are abnormal at day 7.5 of gestation. The extraembryonic ectoderm does not develop, and primitive-streak formation and mesoderm production do not occur. In contrast, extensive development of the extraembryonic ectoderm, as well as mesoderm production, are observed in the c5FR60Hg- and c2YPSj-homozygous embryos. The mesoderm does not, however, organize into somites and the neural axis does not form. The embryos are grossly abnormal by day 8.5 of development. There are two other albino deletions (c6H and c11DSD) that are known to affect the embryo around the time of gastrulation (Niswander et al. 1988), and the lethal phenotype observed for the c4FR60Hd-homozygous embryos is similar to that described for c6H-homozygous embryos, whereas the c5FR60Hg- and c2YPSj-homozygous embryos display a phenotype that is similar to c11DSD-homozygous embryos. A detailed complementation analysis using these five deletions revealed that the c5FR60Hg, c2YPSj and c11DSD deletions could partially complement the phenotype produced by the c4FR60Hd and c6H deletions in any combination. Extensive development of the extraembryonic structures and production of mesoderm occurs in the compound heterozygotes. These results suggest that the distal breakpoints of the c5FR60Hg, c2YPSj and c11DSD deletions lie more proximal than the distal breakpoints of the c4FR60Hd and c6H deletions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Fibroblast growth factors (FGFs) are required for brain, pharyngeal arch, suture and neural crest cell development and mutations in the FGF receptors have been linked to human craniofacial malformations. To study the functions of FGF during facial morphogenesis we locally perturb FGF signalling in the avian facial prominences with FGFR antagonists, foil barriers and FGF2 protein. We tested 4 positions with antagonist-soaked beads but only one of these induced a facial defect. Embryos treated in the lateral frontonasal mass, adjacent to the nasal slit developed cleft beaks. The main mechanisms were a block in proliferation and an increase in apoptosis in those areas that were most dependent on FGF signaling. We inserted foil barriers with the goal of blocking diffusion of FGF ligands out of the lateral edge of the frontonasal mass. The barriers induced an upregulation of the FGF target gene, SPRY2 compared to the control side. Moreover, these changes in expression were associated with deletions of the lateral edge of the premaxillary bone. To determine whether we could replicate the effects of the foil by increasing FGF levels, beads soaked in FGF2 were placed into the lateral edge of the frontonasal mass. There was a significant increase in proliferation and an expansion of the frontonasal mass but the skeletal defects were minor and not the same as those produced by the foil. Instead it is more likely that the foil repressed FGF signaling perhaps mediated by the increase in SPRY2 expression. In summary, we have found that the nasal slit is a source of FGF signals and the function of FGF is to stimulate proliferation in the cranial frontonasal mass. The FGF independent regions correlate with those previously determined to be dependent on BMP signaling. We propose a new model whereby, FGF-dependent microenvironments exist in the cranial frontonasal mass and caudal maxillary prominence and these flank BMP-dependent regions. Coordination of the proliferation in these regions leads ultimately to normal facial morphogenesis.  相似文献   

10.
Altered estrogen receptor α (ERA) signaling and altered circadian rhythms are both features of breast cancer. By using a method to entrain circadian oscillations in human cultured cells, we recently reported that the expression of key clock genes oscillates in a circadian fashion in ERA-positive breast epithelial cells but not in breast cancer cells, regardless of their ERA status. Moreover, we reported that ERA mRNA oscillates in a circadian fashion in ERA-positive breast epithelial cells, but not in ERA-positive breast cancer cells. By using ERA-positive HME1 breast epithelial cells, which can be both entrained in vitro and can form mammary gland-like acinar structures in three-dimensional (3D) culture, first we identified a circuit encompassing ERA and an estrogen-regulated loop consisting of two circadian clock genes, PER2 and BMAL1. Further, we demonstrated that this estrogen-regulated circuit is necessary for breast epithelial acinar morphogenesis. Disruption of this circuit due to ERA-knockdown, negatively affects the estrogen-sustained circadian PER2-BMAL1 mechanism as well as the formation of 3D HME1 acini. Conversely, knockdown of either PER2 or BMAL1, by hampering the PER2-BMAL1 loop of the circadian clock, negatively affects ERA circadian oscillations and 3D breast acinar morphogenesis. To our knowledge, this study provides the first evidence of the implication of an ERA-circadian clock mechanism in the breast acinar morphogenetic process.  相似文献   

11.
Altered estrogen receptor α (ERA) signaling and altered circadian rhythms are both features of breast cancer. By using a method to entrain circadian oscillations in human cultured cells, we recently reported that the expression of key clock genes oscillates in a circadian fashion in ERA-positive breast epithelial cells but not in breast cancer cells, regardless of their ERA status. Moreover, we reported that ERA mRNA oscillates in a circadian fashion in ERA-positive breast epithelial cells, but not in ERA-positive breast cancer cells. By using ERA-positive HME1 breast epithelial cells, which can be both entrained in vitro and can form mammary gland-like acinar structures in three-dimensional (3D) culture, first we identified a circuit encompassing ERA and an estrogen-regulated loop consisting of two circadian clock genes, PER2 and BMAL1. Further, we demonstrated that this estrogen-regulated circuit is necessary for breast epithelial acinar morphogenesis. Disruption of this circuit due to ERA-knockdown, negatively affects the estrogen-sustained circadian PER2-BMAL1 mechanism as well as the formation of 3D HME1 acini. Conversely, knockdown of either PER2 or BMAL1, by hampering the PER2-BMAL1 loop of the circadian clock, negatively affects ERA circadian oscillations and 3D breast acinar morphogenesis. To our knowledge, this study provides the first evidence of the implication of an ERA-circadian clock mechanism in the breast acinar morphogenetic process.  相似文献   

12.
13.
The steps that lead to the formation of a single primitive heart tube are highly conserved in vertebrate and invertebrate embryos. Concerted migration of the two lateral cardiogenic regions of the mesoderm and endoderm (or ectoderm in invertebrates) is required for their fusion at the midline of the embryo. Morphogenetic signals are involved in this process and the extracellular matrix has been proposed to serve as a link between the two layers of cells. Pericardin (Prc), a novel Drosophila extracellular matrix protein is a good candidate to participate in heart tube formation. The protein has the hallmarks of a type IV collagen alpha-chain and is mainly expressed in the pericardial cells at the onset of dorsal closure. As dorsal closure progresses, Pericardin expression becomes concentrated at the basal surface of the cardioblasts and around the pericardial cells, in close proximity to the dorsal ectoderm. Pericardin is absent from the lumen of the dorsal vessel.Genetic evidence suggests that Prc promotes the proper migration and alignment of heart cells. Df(3)vin6 embryos, as well as embryos in which prc has been silenced via RNAi, exhibit similar and significant defects in the formation of the heart epithelium. In these embryos, the heart epithelium appears disorganized during its migration to the dorsal midline. By the end of embryonic development, cardial and pericardial cells are misaligned such that small clusters of both cell types appear in the heart; these clusters of cells are associated with holes in the walls of the heart. A prc transgene can partially rescue each of these phenotypes, suggesting that prc regulates these events. Our results support, for the first time, the function of a collagen-like protein in the coordinated migration of dorsal ectoderm and heart cells.  相似文献   

14.
15.
16.
Areas of the superficial cephalic ectoderm, including or excluding the neural fold at the same level, were surgically removed from 3-somite chick embryos and replaced by their counterparts excised from a quail embryo at the same developmental stage. Strips of ectoderm corresponding to the presumptive branchial arches were delineated, thus defining anteroposterior 'segments' (designated here as 'ectomeres') that coincided with the spatial distribution of neural crest cells arising from the adjacent levels of the neural fold. This discrete ectodermal metamerisation parallels the segmentation of the hindbrain into rhombomeres. It seems, therefore, that not only is the neural crest patterned according to its rhombomeric origin but that the superficial ectoderm covering the branchial arches may be part of a larger developmental unit that includes the entire neurectoderm, i.e., the neural tube and the neural crest.  相似文献   

17.
Laminin alpha chains have unique spatiotemporal expression patterns during development and defining their function is necessary to understand the regulation of epithelial morphogenesis. We investigated the function of laminin alpha5 in mouse submandibular glands (SMGs). Lama5(-/-) SMGs have a striking phenotype: epithelial clefting is delayed, although proliferation occurs; there is decreased FGFR1b and FGFR2b, but no difference in Lama1 expression; later in development, epithelial cell organization and lumen formation are disrupted. In wild-type SMGs alpha5 and alpha1 are present in epithelial clefts but as branching begins alpha5 expression increases while alpha1 decreases. Lama5 siRNA decreased branching, p42 MAPK phosphorylation, and FGFR expression, and branching was rescued by FGF10. FGFR siRNA decreased Lama5 suggesting that FGFR signaling provides positive feedback for Lama5 expression. Anti-beta1 integrin antibodies decreased FGFR and Lama5 expression, suggesting that beta1 integrin signaling provides positive feedback for Lama5 and FGFR expression. Interestingly, the Itga3(-/-):Itga6(-/-) SMGs have a similar phenotype to Lama5(-/-). Our findings suggest that laminin alpha5 controls SMG epithelial morphogenesis through beta1 integrin signaling by regulating FGFR expression, which also reciprocally regulates the expression of Lama5. These data link changes in basement membrane composition during branching morphogenesis with FGFR expression and signaling.  相似文献   

18.
Photoreceptor cells of the Drosophila compound eye begin to develop specialized membrane foldings at the apical surface in midpupation. The microvillar structure ultimately forms the rhabdomere, an actin-rich light-gathering organelle with a characteristic shape and morphology. In a P-element transposition screen, we isolated mutations in a gene, bifocal (bif), which is required for the development of normal rhabdomeres. The morphological defects seen in bif mutant animals, in which the distinct contact domains established by the newly formed rhabdomeres are abnormal, first become apparent during midpupal development. The later defects seen in the mutant adult R cells are more dramatic, with the rhabdomeres enlarged, elongated, and frequently split. bif encodes a novel putative protein of 1063 amino acids which is expressed in the embryo and the larval eye imaginal disc in a pattern identical to that of F actin. During pupal development, Bif localizes to the base of the filamentous actin associated with the forming rhabdomeres along one side of the differentiating R cells. On the basis of its subcellular localization and loss-of-function phenotype, we discuss possible roles of Bif in photoreceptor morphogenesis.  相似文献   

19.
During development, cell migration plays an important role in morphogenetic processes. The construction of the skeleton of the sea urchin embryo by a small number of cells, the primary mesenchyme cells (PMCs), offers a remarkable model to study cell migration and its involvement in morphogenesis. During gastrulation, PMCs migrate and become positioned along the ectodermal wall following a stereotypical pattern that determines skeleton morphology. Previous studies have shown that interactions between ectoderm and PMCs regulate several aspects of skeletal morphogenesis, but little is known at the molecular level. Here we show that VEGF signaling between ectoderm and PMCs is crucial in this process. The VEGF receptor (VEGFR) is expressed exclusively in PMCs, whereas VEGF expression is restricted to two small areas of the ectoderm, in front of the positions where the ventrolateral PMC clusters that initiate skeletogenesis will form. Overexpression of VEGF leads to skeletal abnormalities, whereas inhibition of VEGF/VEGFR signaling results in incorrect positioning of the PMCs, downregulation of PMC-specific genes and loss of skeleton. We present evidence that localized VEGF acts as both a guidance cue and a differentiation signal, providing a crucial link between the positioning and differentiation of the migrating PMCs and leading to morphogenesis of the embryonic skeleton.  相似文献   

20.
Neurons undergo extensive morphogenesis during development. To systematically identify genes important for different aspects of neuronal morphogenesis, we performed a genetic screen using the MARCM system in the mushroom body (MB) neurons of the Drosophila brain. Mutations on the right arm of chromosome 2 (which contains approximately 20% of the Drosophila genome) were made homozygous in a small subset of uniquely labeled MB neurons. Independently mutagenized chromosomes (4600) were screened, yielding defects in neuroblast proliferation, cell size, membrane trafficking, and axon and dendrite morphogenesis. We report mutations that affect these different aspects of morphogenesis and phenotypically characterize a subset. We found that roadblock, which encodes a dynein light chain, exhibits reduced cell number in neuroblast clones, reduced dendritic complexity and defective axonal transport. These phenotypes are nearly identical to mutations in dynein heavy chain Dhc64 and in Lis1, the Drosophila homolog of human lissencephaly 1, reinforcing the role of the dynein complex in cell proliferation, dendritic morphogenesis and axonal transport. Phenotypic analysis of short stop/kakapo, which encodes a large cytoskeletal linker protein, reveals a novel function in regulating microtubule polarity in neurons. MB neurons mutant for flamingo, which encodes a seven transmembrane cadherin, extend processes beyond their wild-type dendritic territories. Overexpression of Flamingo results in axon retraction. Our results suggest that most genes involved in neuronal morphogenesis play multiple roles in different aspects of neural development, rather than performing a dedicated function limited to a specific process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号