首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Allelic deletions along the short arm of human chromosome 3 were mapped in 57 pairs of DNA samples from tumor and normal tissue of renal carcinoma patients in order to locate potential tumor suppressor genes. Twenty highly polymorphic microsatellite markers were used for deletion mapping. Allelic deletions were found in most of the samples (91%). Extended terminal deletions (56%) prevailed over shorter internal and multiple deletions and dominated (65%) in the most aggressive histopathological kidney cancer subtype, clear-cell carcinoma. Frequency analysis of loss of heterozygosity allowed detection of the human chromosome 3 regions most essential for renal carcinomas: the region adjacent to the gene VHL(3p26–p25), the region of homozygous deletions AP20 (3p22–p21.33), and a new region between markers D3S2420 and D3S2409 (3p21.31, 2.2 Mbp).  相似文献   

2.
Allelic imbalances (AI) of polymorphic markers at the short arm of chromosome 3 (3p) were mapped using DNA samples of renal cell carcinoma (RCC, 80 cases), breast carcinoma (BC, 95 cases), and epithelial ovarian cancer (EOC, 50 cases) at the same dense panel of markers (up to 24 loci). Six regions with the increased AI frequency (versus the average values determined for all the analyzed 3p markers) at RCC, BC or EOC were found in 3p chromosome. Four 3p regions presumably contain suppressor genes of tumor growth (TSG) observed in the epithelial tumors of various types. Region between D3S2409 and D3S3667 markers in the 3q21.31 region was identified in this study for the first time. The AI peak in D3S2409-D3S3667 region was statistically significant (P < 0.001, according to Fisher) when representative sample of 95 BC patients was analyzed. The data on increased frequency of polymorphic marker allele amplification suggest that the D3S2409-D3S3667 region contains both putative TSG and protooncogenes.  相似文献   

3.
Allelic imbalances (AI) of polymorphic markers at the short arm of chromosome 3 (3p) were mapped using DNA samples of renal cell carcinoma (RCC, 80 cases), breast carcinoma (BC, 95 cases), and epithelial ovarian cancer (EOC, 50 cases) at the same dense panel of markers (up to 24 loci). Six regions with the increased AI frequency (versus the average values determined for all the analyzed 3p markers) at RCC, BC or EOC were found in 3p chromosome. Four 3p regions presumably contain tumor-suppressor genes (TSG) involved in the epithelial tumors of various types. Region between D3S2409 and D3S3667 markers in the 3p21.31 region was identified in this study for the first time. The AI peak in D3S2409-D3S3667 region was statistically significant (P < 0.001, according to Fisher) when representative sample set of 95 BC patients was analyzed. The data on increased frequency of polymorphic marker allele amplification suggest that the D3S2409-D3S3667 region contains both putative TSG and protooncogenes.  相似文献   

4.
Two classes of genes are the targets of mutations involved in human tumorigenesis: oncogenes, the activation of which leads to growth stimulation, and tumor suppressor genes, which become tumorigenic through loss of function, often through allelic deletion. To obtain evidence for a role for tumor suppressor genes in thyroid tumorigenesis, we examined DNA from 80 thyroid neoplasms for loss of heterozygosity in multiple chromosomal loci using 19 polymorphic genomic probes. None of the informative thyroid tumors studied had allelic loss detected with probes for chromosome 2q (D2S44), 3p (D3F15S2, D3S32), 3q (D3S46), 4p (D4S125), 6p (D6S40), 8q (D8S39), 9q (D9S7), 12p (D12S14), 13q (D13S52), 17p (D17S30), or 18q (D18S10). One of eight of the follicular adenomas had a 10q deletion detected with marker D10S15, and one of 26 had a 10q deletion detected with D10S25. One of two of the follicular carcinomas had an 11p deletion in the H-ras locus. The most significant findings were on chromosome 11q13, the site containing the putative gene predisposing to multiple endocrine neoplasia type I. Four of 27 follicular adenomas had loss of heterozygosity for probes in this region. Allelic deletions were detected with the following probes: D11S149, PYGM, D11S146, and INT2. None of 13 informative papillary carcinomas and none of two follicular carcinomas had loss of heterozygosity detectable with these 11q13 markers. Allelic loss is a relatively infrequent event in human thyroid tumors. Deletions of chromosome 11q13 are present in about 14% of follicular, but not papillary, neoplasms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The tumors of patients with small cell lung carcinoma (SCLC) frequently exhibit the loss of alleles at polymorphic loci on the short arm of chromosome 3. We report the genotype analysis of six SCLC patients obtained using 15 chromosome 3 probes that identified 19 restriction fragment length polymorphisms (RFLPs). Five of the six patients were reduced to homozygosity in the tumor DNA at every informative 3p locus, and thus did not serve to delineate the deletion. However, the RFLP analysis of the tumor DNA of the sixth patient demonstrated both heterozygous and hemizygous loci on 3p and allowed the definition of an interstitial deletion that extends proximal to the D3S2 locus at 3p14.2-p21 to include at least 3p13-p14. The exclusion of the D3F15S2 locus from the deleted region, observed in this patient, is an uncharacteristic feature of SCLC deletions. This deletion includes the location of D3S30 and D3S4, and thus serves to map these loci within the proximal half of chromosome 3.  相似文献   

6.
The review considers the results obtained by several groups in the fields of identification of polymorphic loci in the human genome, localization and analysis of genes associated with epithelial tumors of various origins, and generation of molecular markers of socially important oncological diseases. In the first two cases, work was initiated and supported by the Russian program Human Genome. To find new polymorphic loci in the human genome, di-, tri-, and tetranucleotide repeats were searched for in an ordered cosmid library of chromosome 13, NotI and cosmid clones of chromosome 3, and in brain EST. In total, nine polymorphisms and almost 200 STS were identified. Markers of NotI clones of chromosome 3 were associated with particular genes. Polymorphic loci NL1-024, NL2-007, and EST04896 were employed in analysis of deletions from chromosome 3p in tumor DNA. Deletion mapping of 3p in epithelial tumors of five types revealed six critical regions containing potential tumor suppressor genes. Of these, two were in the distal region of chromosome 3p and four, in region 3p21.3. A significant correlation was observed for the frequency of allelic deletions and the stage and the grade of tumors (P < 0.05). On the strength of these findings, genes of region 3p were associated with both tumor development and progression, and proposed as prognostic markers. Regions LUCA and AP20 (3p21.3) showed a high (90%) frequency of aberrations, including homozygous deletions in almost 20% cases. The peak of allelic deletions from region D3S2409-D3S3667 (600 kb) was statistically valid (P = 10(-3)). Regions AP20 and D3S2409-D3S3667 (3p21.3) were for the first time associated with tumorigenesis. Clusters of tumor suppressor genes were identified in regions LUCA, AP20, and D3S2409-D3S3667. Methylation of RASSF1A and RARbeta2 (3p) was associated with early carcinogenesis, and that of SEMA3B, with tumor progression. These findings are useful for early diagnostics and post-surgery prognosis of tumors.  相似文献   

7.
To identify the loci associated with progression of cervical carcinoma, chromosome 6 regions were tested for loss of heterozygosity. Detailed analysis with 28 microsatellite markers revealed a high frequency of allelic deletions for several loci of the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16-21, 6q23-24, 6q25, 6q27) arms of chromosome 6. Examination of 37 microdissected carcinoma and 22 cervical dysplasia specimens revealed allelic deletions from the HLA class I-III genes (6p22-21.3) and subtelomeric locus 6p25 were found in more than 40% dysplasia specimens. With multiple microdissection of cryosections, genetic heterogeneity of squamous cervical carcinoma was analyzed, and clonal and subclonal allelic deletions from chromosome 6 were identified. Half of the tumors had clonal allelic deletion of D6S273 (6p21.3), which is in a Ly6G6D (MEGT1) intron in the HLA class III gene locus. The frequency of allelic deletions from the chromosome 6 long arm was no more than 20% in dysplasias. Allelic deletions from two loci, 6q14 and 6q16-21, were for the first time associated with invasion and metastasis in cervical carcinoma.  相似文献   

8.
Cytogenetic studies and DNA analysis have shown that the short arm of chromosome 3 is the region in the genome that is commonly deleted in renal cell carcinoma. By studying loss of heterozygosity in 41 matched tumor/normal kidney tissue pairs, we could delimit the commonly deleted part of 3p to the region between the loci THRB (in 3p24) and D3S2 (in 3p21). The regions on 3p suggested to be involved in the Von Hippel-Lindau syndrome and in hereditary renal cell carcinoma are both outside this smallest region of overlapping deletions. Consequently, renal cell cancer would be an illustration of the possibility that different genes cause the same type of tumor.  相似文献   

9.
Braga  E. A.  Kisselev  L. L.  Zabarovsky  E. R. 《Molecular Biology》2004,38(2):145-154
The review considers the results obtained by several groups in the fields of identification of polymorphic loci in the human genome, localization and analysis of genes associated with epithelial tumors of various origins, and generation of molecular markers of socially important oncological diseases. In the first two cases, work was initiated and supported by the Russian program Human Genome. To find new polymorphic loci in the human genome, di-, tri-, and tetranucleotide repeats were searched for in an ordered cosmid library of chromosome 13, NotI and cosmid clones of chromosome 3, and in brain EST. In total, nine polymorphisms and almost 200 STS were identified. Markers of NotI clones of chromosome 3 were associated with particular genes. Polymorphic loci NL1-024, NL2-007, and EST04896 were employed in analysis of deletions from chromosome 3p in tumor DNA. Deletion mapping of 3p in epithelial tumors of five types revealed six critical regions containing potential tumor suppressor genes. Of these, two were in the distal region of chromosome 3p and four, in region 3p21.3. A significant correlation was observed for the frequency of allelic deletions and the stage and the grade of tumors (P < 0.05). On the strength of these findings, genes of region 3p were associated with both tumor development and progression, and proposed as prognostic markers. Regions LUCA and AP20 (3p21.3) showed a high (90%) frequency of aberrations, including homozygous deletions in almost 20% cases. The peak of allelic deletions from region D3S2409–D3S3667 (600 kb) was statistically valid (P = 10–3). Regions AP20 and D3S2409–D3S3667 (3p21.3) were for the first time associated with tumorigenesis. Clusters of tumor suppressor genes were identified in regions LUCA, AP20, and D3S2409–D3S3667. Methylation of RASSF1A and RAR-beta2 (3p) was associated with early carcinogenesis, and that of SEMA3B, with tumor progression. These findings are useful for early diagnostics and post-surgery prognosis of tumors.  相似文献   

10.
Summary We are interested in the precise localization of various DNA probes on the short arm of chromosome 11 for our research on the aniridia-Wilms' tumor association (AWTA), assigned to region 11p13 (Knudson and Strong 1972; Riccardi et al. 1978). For this purpose we have screened lymphocyte DNA and material derived from somatic cell hybrids from individuals with constitutional 11p deletions with a range of available probes: D11S12; calcitonin/CGRP (CALC1/CALC2); insulin (INS); Harvey ras 1 (HRAS 1); beta-globin gene cluster (HBBC); human insulin-like growth factor 2 (IGF-2); parathyroid hormone (PTH); human pepsinogen A (PGA). Using this material, it has been possible to map all probes used, except insulin, outside the region 11p111-p15.1, resulting in an SRO (same regional overlap) of 11p15.1-p15.5 for most probes. We found an SRO for PGA of 11p111-q12 and an SRO for CALC2 of 11p15.1-p15.5 or 11p111-q12. We have localised the insulin gene to band 11p15.1.  相似文献   

11.
Mazurenko  N. N.  Beliakov  I. S.  Bliyev  A. Yu.  Guo  Z.  Hu  X.  Vinokourova  S. V.  Bidzhieva  B. A.  Pavlova  L. S.  Ponten  J.  Kisseljov  F. L. 《Molecular Biology》2003,37(3):404-411
Loss of heterozygosity (LOH) analysis on chromosome 6 was performed to define the genetic changes that occur in the development of squamous cell cervical cancer (SCC). Detailed analysis with 28 microsatellite markers revealed several loci with high frequency of deletions at the short (6p25, 6p22, 6p21.3) and long (6q14, 6q16–q21, 6q23–q24, 6q25, 6q27) arms of chromosome 6. Examination of microdissected 37 SCC and 22 cervical intraepithelial neoplasias (CIN) revealed allelic deletions in the HLA class I–III region (6p22–p21.3) and at subtelomeric locus 6p25-ter in more than 40% of CIN. By a combination of LOH and microdissection of multiple samples from the same tumor sections, we studied the intratumoral genetic heterogeneity of SCC, and identified clonal and subclonal allelic deletions. Half of SCC had clonal allelic deletion at D6S273, which is localized in intron of Ly6G6D (MEGT1) gene mapped in the HLA class III region. The LOH frequency at 6q in CIN cases did not exceed 20%. Allelic deletions at two loci, 6q14 and 6q16–q21, were for the first time associated with invasion and metastasis in SCC.  相似文献   

12.
The marker D17S5, mapping to the short arm of chromosome 17, was recently reported by us and others to undergo frequent heterozygous deletion in human primary breast carcinomas, implicating the presence of a tumor suppressor gene in this region. To narrow down the location of this gene more precisely, we have performed a deletion-mapping study in an extended series of 78 breast carcinomas, using nine polymorphic markers for the short arm and two polymorphic markers for the long arm of chromosome 17. Partial allele losses on 17p were observed in nine cases, which, taken together, suggest that the target gene for the deletions maps to the region extending between the markers D17S5 (17p13.3) and D17S67 (17p12).  相似文献   

13.
Chromosomal region 2p15-p16, which corresponds to the genetic interval flanked by polymorphic markers D2S119 and D2S378 and covers a genetic distance of approximately 16 cM, is underrepresented in the existing maps of chromosome 2. This is primarily due to two large gaps of unknown physical distance within the known yeast and bacterial artificial chromosome (YAC and BAC, respectively) maps. In constructing a YAC/BAC contig covering 2p15-p16, a total of 55 sequence-tagged sites (25 of which are polymorphic), including new sequences derived from chromosomal walking, and 38 expressed sequence tags were screened by a commercially available RH panel (Stanford G3). A total of 45 of these sequences were placed; 32 of them were assigned at unique sites. The high-resolution TNG3 RH panel was then used to define further the chromosomal order of markers contained in the region flanked by D2S391 and D2S2153. This region harbors the genes for two autosomal dominant disorders, Carney complex (CNC), a multiple neoplasia syndrome, and Doyne honeycomb retinal dystrophy (DHRD), a disease leading to blindness at a young age. This is the first attempt to order cloned sequences in chromosomal region 2p15-p16, an area apparently resistant to YAC cloning. Construction of the 2p15-p16 RH map is critical for identifying the genes responsible for CNC and DHRD, as well as for the molecular elucidation of a chromosomal region that is frequently rearranged in tumors.  相似文献   

14.
The region of chromosome 2 encompassed by the polymorphic markers D2S378 (centromeric) and D2S391 (telomeric) spans an approximately 10-cM distance in cytogenetic bands 2p15-p21. This area is frequently involved in cytogenetic alterations in human cancers. It also harbors the genes for several genetic disorders, including Type I hereditary nonpolyposis colorectal cancer (HNPCC), familial male precocious puberty (FMPP), Carney complex (CNC), Doyne's honeycomb retinal dystrophy (DHRD), and one form of familial dyslexia (DYX-3). Only a handful of known genes have been mapped to 2p16. These include MSH2, which is responsible for HNPCC, FSHR, the gene responsible for FMPP, EFEMP-1, the gene mutated in DHRD, GTBP, a DNA repair gene, and SPTBN1, nonerythryocytic beta-spectrin. The genes for CNC and DYX-3 remain unknown, due to lack of a contig of this region and its underrepresentation in the existing maps. This report presents a yeast- and bacterial-artificial chromosome (YAC and BAC, respectively) resource for the construction of a sequence-ready map of 2p15-p21 between the markers D2S378 and D2S391 at the centromeric and telomeric ends, respectively. The recently published Genemap'98 lists 146 expressed sequence tags (ESTs) in this region; we have used our YAC-BAC map to place each of these ESTs within a framework of 40 known and 3 newly cloned polymorphic markers and 37 new sequence-tagged sites. This map provides an integration of genetic, radiation hybrid, and physical mapping information for the region corresponding to cytogenetic bands 2p15-p21 and is expected to facilitate the identification of disease genes from the area.  相似文献   

15.
Eight Icelandic breast cancer kindreds were subjected to linkage analyses with respect to 28 microsatellite loci dispersed along the short arm of chromosome 3. Breast tumors derived from these kindreds were concurrently scored for allelic imbalance with ten of the markers. Linkage to most markers could be excluded on the basis of negative LOD scores and haplotype analyses, although some moderately positive LOD scores resulted. A high frequency of imbalance in the familial tumors was seen with two of the markers in comparison with results obtained from sporadic material. The highest frequency (68%) of imbalance was detected with the marker D3S1217, which is located on 3p14.2-p14.1. Imbalance at the D3S1211 locus, which is more telomeric (3p24.2-p22), was not significantly elevated in the familial tumors. We suggest that the genetic defect responsible for breast cancer susceptibility in these families either promotes instability in the 3p14.2-p14.1 region or enhances the selective advantage of such changes.  相似文献   

16.
A region of chromosome 9, surrounding the interferon-beta (IFNB1) locus and the interferon-alpha (IFNA) gene cluster on 9p13-p22, has been shown to be frequently deleted or rearranged in a number of human cancers, including leukemia, glioma, non-small-cell lung carcinoma, and melanoma. To assist in better defining the precise region(s) of 9p implicated in each of these malignancies, a combined genetic and physical map of this region was generated using the available 9p markers IFNB1, IFNA, D9S3, and D9S19, along with a newly described locus, D9S126. The relative order and distances between these loci were determined by multipoint linkage analysis of CEPH (Centre d'Etude du Polymorphisme Humain) pedigree DNAs, pulsed-field gel electrophoresis, and fluorescence in situ hybridization. All three mapping approaches gave concordant results and, in the case of multipoint linkage analysis, the following gene order was supported for these and other closely linked chromosome 9 markers present in the CEPH database: pter-D9S33-IFNB1/IFNA-D9S126-D9S3-D9S19 -D9S9/D9S15-ASSP3-qter. This map serves to extend preexisting chromosome 9 maps (which focus primarily on 9q) and also reassigns D9S3 and D9S19 to more proximal locations on 9p.  相似文献   

17.
The hereditary disorders of peripheral nerve form one of the most common groups of human genetic diseases, collectively called Charcot-Marie-Tooth (CMT) neuropathy. Using linkage analysis we have identified a new locus for a form of CMT that we have called "dominant intermediate CMT" (DI-CMT). A genomewide screen using 383 microsatellite markers showed strong linkage to the short arm of chromosome 19 (maximum LOD score 4.3, with a recombination fraction (straight theta) of 0, at D19S221 and maximum LOD score 5.28, straight theta=0, at D19S226). Haplotype analysis performed with 14 additional markers placed the DI-CMT locus within a 16.8-cM region flanked by the markers D19S586 and D19S546. Multipoint linkage analysis suggested the most likely location at D19S226 (maximum multipoint LOD score 6.77), within a 10-cM confidence interval. This study establishes the presence of a locus for DI-CMT on chromosome 19p12-p13.2.  相似文献   

18.
We have analyzed 12 microsatellite markers on chromosome 9p in 54 paired cutaneous malignant melanoma (CMM) tumors and normal tissues. Forty-six percent of the tumors, including two in situ CMMs, showed loss of heterozygosity (LOH) at 9p. Only one tumor was homozygously deleted for 9p markers. The smallest deleted region was defined by five tumors and included markers D9S126 to D9S259. Loss of eight or more markers correlated significantly with worse prognosis (P < .002). Among the primary tumors, 87.5% of those with large deletions have a high risk of metastasis, as compared with only 18% of those without deletions or with loss of fewer than 8 markers (P < .001). It was not possible to demonstrate homozygous deletions of p16 in any of the CMM tumors. In four tumors, the LOH for 9p markers did not involve p16. The reported data suggest the existence of several tumor suppressor genes at 9p that are involved in the predisposition to and/or progression of CMM and exclude p16 from involvement in the early development of some melanoma tumors.  相似文献   

19.
Our laboratory previously reported a high frequency of loss of heterozygosity (LOH) at 1p32-p33 in endometrial cancers. LOH at 1p32-p33 is a specific feature of one of the most aggressive forms of endometrial carcinoma, uterine papillary serous cancer (UPSC). The minimum region of allelic loss in UPSC is defined by D1S190 and D1S447, an interval corresponding to less than 1 cM. Here we describe the construction and characterization of a sequence-ready clone contig that spans the deletion region. The contig consists of 24 bacterial artificial chromosome clones and 18 P1 artificial chromosome clones and spans approximately 1050 kb. The consensus region of allelic loss between D1S190 and D1S447 represents approximately 792 kb. Eight previously described ESTs have been positioned within the contig.  相似文献   

20.
Von Hippel-Lindau (VHL) disease is a dominantly inherited familial cancer syndrome characterised by the development of retinal and central nervous system haemangioblastomas, renal cell carcinoma (RCC), phaeochromocytoma and pancreatic tumours. The VHL disease gene maps to chromosome 3p25-p26. To investigate the mechanism of tumourigenesis in VHL disease, we analysed 24 paired blood/tumour DNA samples from 20 VHL patients for allele loss on chromosome 3p and in the region of tumour suppressor genes on chromosomes 5, 11, 13, 17 and 22. Nine out of 24 tumours showed loss of heterozygosity (LOH) at at least one locus on chromosome 3p and in each case the LOH included the region to which the VHL gene has been mapped. Chromosome 3p allele loss was found in four tumour types (RCC, haemangioblastoma, phaeochromocytoma and pancreatic tumour) suggesting a common mechanism of tumourigenesis in all types of tumour in VHL disease. The smallest region of overlap was between D3S1038 and D3S18, a region that corresponds to the target region for the VHL gene from genetic linkage studies. The parental origin of the chromosome 3p25-p26 allele loss could be determined in seven tumours from seven familial cases; in each tumour, the allele lost had been inherited from the unaffected parent. Our results suggest that the VHL disease gene functions as a recessive tumour suppressor gene and that inactivation of both alleles of the VHL gene is the critical event in the pathogenesis of VHL neoplasms. Four VHL tumours showed LOH on other chromosomes (5q21, 13q, 17q) indicating that homozygous VHL gene mutations may be required but may not be sufficient for tumourigenesis in VHL disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号