首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 controls progression to S phase and mitosis by stabilizing key APC/C ubiquitination substrates, including cyclin A. Examining Emi1 binding proteins, we identified the Evi5 oncogene as a regulator of Emi1 accumulation. Evi5 antagonizes SCF(betaTrCP)-dependent Emi1 ubiquitination and destruction by binding to a site adjacent to Emi1's DSGxxS degron and blocking both degron phosphorylation by Polo-like kinases and subsequent betaTrCP binding. Thus, Evi5 functions as a stabilizing factor maintaining Emi1 levels in S/G2 phase. Evi5 protein accumulates in early G1 following Plk1 destruction and is degraded in a Plk1- and ubiquitin-dependent manner in early mitosis. Ablation of Evi5 induces precocious degradation of Emi1 by the Plk/SCF(betaTrCP) pathway, causing premature APC/C activation; cyclin destruction; cell-cycle arrest; centrosome overduplication; and, finally, mitotic catastrophe. We propose that the balance of Evi5 and Polo-like kinase activities determines the timely accumulation of Emi1 and cyclin, ensuring mitotic fidelity.  相似文献   

2.
3.
Multiple molecular lesions in human cancers directly collaborate to deregulate proliferation and suppress apoptosis to promote tumorigenesis. The candidate tumor suppressor RASSF1A is commonly inactivated in a broad spectrum of human tumors and has been implicated as a pivotal gatekeeper of cell cycle progression. However, a mechanistic account of the role of RASSF1A gene inactivation in tumor initiation is lacking. Here we have employed loss-of-function analysis in human epithelial cells for a detailed investigation of the contribution of RASSF1 to cell cycle progression. We found that RASSF1A has dual opposing regulatory connections to G(1)/S phase cell cycle transit. RASSF1A associates with the Ewing sarcoma breakpoint protein, EWS, to limit accumulation of cyclin D1 and restrict exit from G(1). Surprisingly, we found that RASSF1A is also required to restrict SCF(betaTrCP) activity to allow G/S phase transition. This restriction is required for accumulation of the anaphase-promoting complex/cyclosome (APC/C) inhibitor Emi1 and the concomitant block of APC/C-dependent cyclin A turnover. The consequence of this relationship is inhibition of cell cycle progression in normal epithelial cells upon RASSF1A depletion despite elevated cyclin D1 concentrations. Progression to tumorigenicity upon RASSF1A gene inactivation should therefore require collaborating genetic aberrations that bypass the consequences of impaired APC/C regulation at the G(1)/S phase cell cycle transition.  相似文献   

4.
The anaphase-promoting complex (APC) early mitotic inhibitor 1 (Emi1) is required to induce S- and M-phase entries by stimulating the accumulation of cyclin A and cyclin B through APC(Cdh1/cdc20) inhibition. In this report, we show that Emi1 proteolysis can be induced by cyclin A/cdk (cdk for cyclin-dependent kinase). Paradoxically, Emi1 is stable during G2 phase, when cyclin A/cdk, Plx1 and SCF(betatrcp) (SCF for Skp1-Cul1-Fbox protein)--which play a role in its degradation--are active. Here, we identify Pin1 as a new regulator of Emi1 that induces Emi1 stabilization by preventing its association with SCF(betatrcp). We show that Pin1 binds to Emi1 and prevents its association with betatrcp in an isomerization-dependent pathway. We also show that Emi1-Pin1 binding is present in vivo in XL2 cells during G2 phase and that this association protects Emi1 from being degraded during this phase of the cell cycle. We propose that S- and M-phase entries are mediated by the accumulation of cyclin A and cyclin B through a Pin1-dependent stabilization of Emi1 during G2.  相似文献   

5.
Cyclin-dependent kinase 1 (Cdk1) initiates mitosis and later activates the anaphase-promoting complex/cyclosome (APC/C) to destroy cyclins. Kinetochore-derived checkpoint signaling delays APC/C-dependent cyclin B destruction, and checkpoint-independent mechanisms cooperate to limit APC/C activity when kinetochores lack checkpoint components in early mitosis. The APC/C and cyclin B localize to the spindle and poles, but the significance and regulation of these populations remain unclear. Here we describe a critical spindle pole-associated mechanism, called the END (Emi1/NuMA/dynein-dynactin) network, that spatially restricts APC/C activity in early mitosis. The APC/C inhibitor Emi1 binds the spindle-organizing NuMA/dynein-dynactin complex to anchor and inhibit the APC/C at spindle poles, and thereby limits destruction of spindle-associated cyclin B. Cyclin B/Cdk1 activity recruits the END network and establishes a positive feedback loop to stabilize spindle-associated cyclin B critical for spindle assembly. The organization of the APC/C on the spindle also provides a framework for understanding microtubule-dependent organization of protein destruction.  相似文献   

6.
Progression through mitosis requires activation of cyclin B/Cdk1 and its downstream targets, including Polo-like kinase and the anaphase-promoting complex (APC), the ubiquitin ligase directing degradation of cyclins A and B. Recent evidence shows that APC activation requires destruction of the APC inhibitor Emi1. In prophase, phosphorylation of Emi1 generates a D-pS-G-X-X-pS degron to recruit the SCF(betaTrCP) ubiquitin ligase, causing Emi1 destruction and allowing progression beyond prometaphase, but the kinases directing this phosphorylation remain undefined. We show here that the polo-like kinase Plk1 is strictly required for Emi1 destruction and that overexpression of Plk1 is sufficient to trigger Emi1 destruction. Plk1 stimulates Emi1 phosphorylation, betaTrCP binding, and ubiquitination in vitro and cyclin B/Cdk1 enhances these effects. Plk1 binds to Emi1 in mitosis and the two proteins colocalize on the mitotic spindle poles, suggesting that Plk1 may spatially control Emi1 destruction. These data support the hypothesis that Plk1 activates the APC by directing the SCF-dependent destruction of Emi1 in prophase.  相似文献   

7.
Vertebrate eggs arrest at metaphase of meiosis II due to an activity known as cytostatic factor (CSF). CSF antagonizes the ubiquitin ligase activity of the anaphase-promoting complex/cyclosome (APC/C), preventing cyclin B destruction and meiotic exit until fertilization occurs. A puzzling feature of CSF arrest is that APC/C inhibition is leaky. Ongoing cyclin B synthesis is counterbalanced by a limited amount of APC/C-mediated cyclin B destruction; thus, cyclin B/Cdc2 activity remains at steady state. How the APC/C can be slightly active toward cyclin B, and yet restrained from ubiquitinating cyclin B altogether, is unknown. Emi2/XErp1 is the critical CSF component directly responsible for APC/C inhibition during CSF arrest. Fertilization triggers the Ca2+-dependent destruction of Emi2, releasing the APC/C to ubiquitinate the full pool of cyclin B and initiate completion of meiosis. Previously, we showed that a phosphatase maintains Emi2’s APC/C-inhibitory activity in CSF-arrested Xenopus egg extracts. Here, we demonstrate that phosphatase inhibition permits Emi2 phosphorylation at thr-545 and -551, which inactivates Emi2. Furthermore, we provide evidence that adding excess cyclin B to CSF extracts stimulates Cdc2 phosphorylation of these same residues, antagonizing Emi2-APC/C association. Our findings suggest a model wherein the pool of Emi2 acts analogously to a rheostat by integrating Cdc2 and phosphatase activities to prevent cyclin B overaccumulation and Cdc2 hyperactivity during the indefinite period of time between arrival at metaphase II and eventual fertilization. Finally, we propose that inactivation of Emi2 by Cdc2 permits mitotic progression during early embryonic cleavage cycles.  相似文献   

8.
Cytostatic factor (CSF) arrests unfertilized vertebrate eggs in metaphase of meiosis II by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from mediating cyclin destruction. The APC/C inhibitor Emi2/XErp1 satisfies a number of historical criteria for the molecular identification of CSF, but the mechanism by which CSF is activated selectively in meiosis II is the remaining unexplained criterion. Here we provide an explanation by showing that Emi2 is expressed specifically in meiosis II through translational de-repression or “unmasking” of its mRNA. We find that Emi2 protein is undetectable in immature, G2/prophase-arrested Xenopus oocytes and accumulates ~90 minutes after germinal vesicle breakdown. The 3’ untranslated region of Emi2 mRNA contains cytoplasmic polyadenylation elements that directly bind the CPEB protein and confer temporal regulation of Emi2 polyadenylation and translation. Our results demonstrate that cytoplasmic polyadenylation and translational unmasking of Emi2 directs meiosis II-specific CSF arrest.  相似文献   

9.
Reimann JD  Freed E  Hsu JY  Kramer ER  Peters JM  Jackson PK 《Cell》2001,105(5):645-655
We have discovered an early mitotic inhibitor, Emi1, which regulates mitosis by inhibiting the anaphase promoting complex/cyclosome (APC). Emi1 is a conserved F box protein containing a zinc binding region essential for APC inhibition. Emi1 accumulates before mitosis and is ubiquitylated and destroyed in mitosis, independent of the APC. Emi1 immunodepletion from cycling Xenopus extracts strongly delays cyclin B accumulation and mitotic entry, whereas nondestructible Emi1 stabilizes APC substrates and causes a mitotic block. Emi1 binds the APC activator Cdc20, and Cdc20 can rescue an Emi1-induced block to cyclin B destruction. Our results suggest that Emi1 regulates progression through early mitosis by preventing premature APC activation, and may help explain the well-known delay between cyclin B/Cdc2 activation and cyclin B destruction.  相似文献   

10.
Telomere attrition, DNA damage and constitutive mitogenic signaling can all trigger cellular senescence in normal cells and serve as a defense against tumor progression. Cancer cells may circumvent this cellular defense by acquiring genetic mutations in checkpoint proteins responsible for regulating permanent cell cycle arrest. A small family of tumor suppressor genes encoding the retinoblastoma susceptibility protein family (Rb, p107, p130) exerts a partially redundant control of entry into S phase of DNA replication and cellular proliferation. Here we report that activation of the p53-dependent DNA damage response has been found to accelerate senescence in human prostate cancer cells lacking a functional Rb protein. This novel form of irradiation-induced premature cellular senescence reinforces the notion that other Rb family members may compensate for loss of Rb protein in the DNA damage response pathway. Consistent with this hypothesis, depletion of p107 potently inhibits the irradiation-induced senescence observed in DU145 cells. In contrast, p130 depletion triggers a robust and unexpected form of premature senescence in unirradiated cells. The dominant effect of depleting both p107 and p130, in the absence of Rb, was a complete blockade of irradiation-induced cellular senescence. Onset of the p107-dependent senescence was temporally associated with p53-mediated stabilization of the cyclin-dependent kinase inhibitor p27 and decreases in c-myc and cks1 expression. These results indicate that p107 is required for initiation of accelerated cellular senescence in the absence of Rb and introduces the concept that p130 may be required to prevent the onset of terminal growth arrest in unstimulated prostate cancer cells lacking a functional Rb allele.  相似文献   

11.
Xenopus oocytes are arrested at the G2/prophase boundary of meiosis I and enter meiosis in response to progesterone. A hallmark of meiosis is the absence of DNA replication between the successive cell division phases meiosis I (MI) and meiosis II (MII). After the MI-MII transition, Xenopus eggs are locked in metaphase II by the cytostatic factor (CSF) arrest to prevent parthenogenesis. Early Mitotic Inhibitor 1 (Emi1) maintains CSF arrest by inhibiting the ability of the Anaphase Promoting Complex (APC) to direct the destruction of cyclin B. To investigate whether Emi1 has an earlier role in meiosis, we injected Xenopus oocytes with neutralizing antibodies against Emi1 at G2/prophase and during the MI-MII transition. Progesterone-treated G2/prophase oocytes injected with anti-Emi1 antibody fail to activate Maturation Promoting Factor (MPF), a complex of cdc2/cyclin B, and the MAPK pathway, and do not undergo germinal vesicle breakdown (GVBD). Injection of purified ?90 cyclin B protein or blocking anti-Emi1 antibody with purified Emi1 protein rescues these meiotic processes in Emi1-neutralized oocytes. Acute inhibition of Emi1 in progesterone treated oocytes immediately after GVBD causes rapid loss of cdc2 activity with simultaneous loss of cyclin B levels and inactivation of the MAPK pathway. These oocytes decondense their chromosomes and enter a DNA replication phase instead of progressing to MII. Prior ablation of Cdc20, addition of methyl-ubiquitin, or addition of indestructible ?90 cyclin B rescues the MI-MII transition in Emi1 inhibited oocytes.  相似文献   

12.
Rca1 (regulator of Cyclin A)/Emi (early mitotic inhibitor) proteins are essential inhibitors of the anaphase-promoting complex/cyclosome (APC/C). In Drosophila, Rca1 is required during G2 to prevent premature cyclin degradation by the Fizzy-related (Fzr)-dependent APC/C activity. Here, we present a structure and function analysis of Rca1 showing that a carboxy-terminal fragment is sufficient for APC/C inhibition. Rca1/Emi proteins contain a conserved F-box and interact with components of the Skp-Cullin-F-box (SCF) complex. So far, no function has been ascribed to this domain. We find that the F-box of Rca1 is dispensable for APC/C-Fzr inhibition during G2. Nevertheless, we show that Rca1 has an additional function at the G1-S transition, which requires the F-box. Overexpression of Rca1 accelerates the G1-S transition in an F-box-dependent manner. Conversely, S-phase entry is delayed in cells in which endogenous Rca1 is replaced by a transgene lacking the F-box. We propose that Rca1 acts as an F-box protein in an as yet uncharacterized SCF complex, which promotes S-phase entry.  相似文献   

13.
Progression through mitosis occurs because cyclin B/Cdc2 activation induces the anaphase promoting complex (APC) to cause cyclin B destruction and mitotic exit. To ensure that cyclin B/Cdc2 does not prematurely activate the APC in early mitosis, there must be a mechanism delaying APC activation. Emi1 is a protein capable of inhibiting the APC in S and G2. We show here that Emi1 is phosphorylated by Cdc2, and on a DSGxxS consensus site, is subsequently recognized by the SCF(betaTrCP/Slimb) ubiquitin ligase and destroyed, thus providing a delay for APC activation. Failure of betaTrCP-dependent Emi1 destruction stabilizes APC substrates and results in mitotic catastrophe including centrosome overduplication, potentially explaining mitotic deficiencies in Drosophila Slimb/betaTrCP mutants. We hypothesize that Emi1 destruction relieves a late prophase checkpoint for APC activation.  相似文献   

14.
The transition of oocytes from meiosis I (MI) to meiosis II (MII) requires partial cyclin B degradation to allow MI exit without S phase entry. Rapid reaccumulation of cyclin B allows direct progression into MII, producing a cytostatic factor (CSF)-arrested egg. It has been reported that dampened translation of the anaphase-promoting complex (APC) inhibitor Emi2 at MI allows partial APC activation and MI exit. We have detected active Emi2 translation at MI and show that Emi2 levels in MI are mainly controlled by regulated degradation. Emi2 degradation in MI depends not on Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), but on Cdc2-mediated phosphorylation of multiple sites within Emi2. As in MII, this phosphorylation is antagonized by Mos-mediated recruitment of PP2A to Emi2. Higher Cdc2 kinase activity in MI than MII allows sufficient Emi2 phosphorylation to destabilize Emi2 in MI. At MI anaphase, APC-mediated degradation of cyclin B decreases Cdc2 activity, enabling Cdc2-mediated Emi2 phosphorylation to be successfully antagonized by Mos-mediated PP2A recruitment. These data suggest a model of APC autoinhibition mediated by stabilization of Emi2; Emi2 proteins accumulate at MI exit and inhibit APC activity sufficiently to prevent complete degradation of cyclin B, allowing MI exit while preventing interphase before MII entry.  相似文献   

15.
Cell cycle regulation is characterized by alternating activities of cyclin-dependent kinases (CDKs) and of the ubiquitin ligase anaphase promoting complex/cyclosome (APC/C). During S-phase APC/C is inhibited by early mitotic inhibitor 1 (Emi1) to allow the accumulation of cyclins A and B and to prevent re-replication. Emi1 is degraded at prophase by a Plk1-dependent pathway. Recent studies in which the degradation pathway of Emi1 was disrupted have shown that APC/C is activated at mitotic entry despite stabilization of Emi1. These results suggested the possibility of additional mechanisms other than degradation of Emi1, which release APC/C from inhibition by Emi1 upon entry into mitosis. In this study we report one such mechanism, by which the ability of Emi1 to inhibit APC/C is negatively regulated by CDKs. We show that in Plk1-inhibited cells Emi1 is stabilized and phosphorylated, that Emi1 is phosphorylated by CDKs in mitotic but not S-phase cell extracts, and that Emi1 phosphorylation by mitotic cell extracts or purified CDKs markedly reduces the ability of Emi1 to bind and to inhibit APC/C. Finally, we show that the addition of extracts from S-phase cells to extracts from mitotic cells protects Emi1 from CDK-mediated inactivation.  相似文献   

16.
17.
In early mitosis, the END (Emi1/NuMA/Dynein-dynactin) network anchors the anaphase-promoting complex/cyclosome (APC/C) to the mitotic spindle and poles. Spindle anchoring restricts APC/C activity, thereby limiting the destruction of spindle-associated cyclin B and ensuring maintenance of spindle integrity. Emi1 binds directly to hypophosphorylated APC/C, linking the APC/C to the spindle via NuMA. However, whether the phosphorylation state of the APC/C is important for its association with the spindle and what kinases and phosphatases are necessary for regulating this event remain unknown. Here, we describe the regulation of APC/C-mitotic spindle pole association by phosphorylation. We find that only hypophosphorylated APC/C associates with microtubule asters, suggesting that phosphatases are important. Indeed, a specific form of PPP2 (CA/R1A/R2B) binds APC/C, and PPP2 activity is necessary for Cdc27 dephosphorylation. Screening by RNA interference, we find that inactivation of CA, R1A, or R2B leads to delocalization of APC/C from spindle poles, early mitotic spindle defects, a failure to congress chromosomes, and decreased levels of cyclin B on the spindle. Consistently, inhibition of cyclin B/Cdk1 activity increased APC/C binding to microtubules. Thus, cyclin B/Cdk1 and PPP2 regulate the dynamic association of APC/C with spindle poles in early mitosis, a step necessary for proper spindle formation.  相似文献   

18.
Ubiquitin-mediated proteolysis is critical for the alternation between DNA replication and mitosis and for the key regulatory events in mitosis. The anaphase-promoting complex/cyclosome (APC/C) is a conserved ubiquitin ligase that has a fundamental role in regulating mitosis and the cell cycle in all eukaryotes. In vertebrate cells, early mitotic inhibitor 1 (Emi1) has been proposed as an important APC/C inhibitor whose destruction may trigger activation of the APC/C at mitosis. However, in this study, we show that the degradation of Emi1 is not required to activate the APC/C in mitosis. Instead, we uncover a key role for Emi1 in inhibiting the APC/C in interphase to stabilize the mitotic cyclins and geminin to promote mitosis and prevent rereplication. Thus, Emi1 plays a crucial role in the cell cycle to couple DNA replication with mitosis, and our results also question the current view that the APC/C has to be inactivated to allow DNA replication.  相似文献   

19.
Liu J  Maller JL 《Current biology : CB》2005,15(16):1458-1468
BACKGROUND: Vertebrate oocytes are arrested at second meiotic metaphase by cytostatic factor (CSF) while awaiting fertilization. Accumulating evidence has suggested that inhibition of the anaphase-promoting complex/cyclosome (APC/C) is responsible for this arrest. Xenopus polo-like kinase 1 (Plx1) is required for activation of the APC/C at the metaphase-anaphase transition, and calcium elevation, upon fertilization/activation of eggs, acting through calmodulin-dependent kinase II (CaMKII) is sufficient to activate the APC/C and terminate CSF arrest. However, connections between the Plx1 pathway and the CaMKII pathway have not been identified. RESULTS: Overexpression of Plx1 causes CSF release in the absence of calcium, and depletion of Plx1 from egg extracts blocks induction of CSF release by calcium and CaMKII. Prior phosphorylation of the APC/C inhibitor XErp1/Emi2 by CaMK II renders it a good substrate for Plx1, and phosphorylation by both kinases together promotes its degradation in egg extracts. The pathway is enhanced by the ability of Plx1 to cause calcium-independent activation of CaMKII. The results identify the targets of CaMKII and Plx1 that promote egg activation and define the first known pathway of CSF release in which an APC/C inhibitor is targeted for degradation only when both CaMKII and Plx1 are active after calcium elevation at fertilization. CONCLUSIONS: Plx1 with an intact polo-box domain is necessary for release of CSF arrest and sufficient when overexpressed. It acts at the same level as CaMKII in the pathway of calcium-induced CSF release by cooperating with CaMKII to regulate APC/C regulator(s), such as XErp1/Emi2, rather than by directly activating the APC/C itself.  相似文献   

20.
BACKGROUND: The mitotic kinases, Cdk1, Aurora A/B, and Polo-like kinase 1 (Plk1) have been characterized extensively to further understanding of mitotic mechanisms and as potential targets for cancer therapy. Cdk1 and Aurora kinase studies have been facilitated by small-molecule inhibitors, but few if any potent Plk1 inhibitors have been identified. RESULTS: We describe the cellular effects of a novel compound, BI 2536, a potent and selective inhibitor of Plk1. The fact that BI 2536 blocks Plk1 activity fully and instantaneously enabled us to study controversial and unknown functions of Plk1. Cells treated with BI 2536 are delayed in prophase but eventually import Cdk1-cyclin B into the nucleus, enter prometaphase, and degrade cyclin A, although BI 2536 prevents degradation of the APC/C inhibitor Emi1. BI 2536-treated cells lack prophase microtubule asters and thus polymerize mitotic microtubules only after nuclear-envelope breakdown and form monopolar spindles that do not stably attach to kinetochores. Mad2 accumulates at kinetochores, and cells arrest with an activated spindle-assembly checkpoint. BI 2536 prevents Plk1's enrichment at kinetochores and centrosomes, and when added to metaphase cells, it induces detachment of microtubules from kinetochores and leads to spindle collapse. CONCLUSIONS: Our results suggest that Plk1's accumulation at centrosomes and kinetochores depends on its own activity and that this activity is required for maintaining centrosome and kinetochore function. Our data also show that Plk1 is not required for prophase entry, but delays transition to prometaphase, and that Emi1 destruction in prometaphase is not essential for APC/C-mediated cyclin A degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号