首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A substrate analogue, 6-(difluoromethyl)tryptophan, was developed and characterized for mechanistic investigation of tryptophanase. The utility of this derivative was based on its ability to partition between fluoride elimination and carbon-carbon bond scission during tryptophan metabolism. The non-enzymatic hydrolysis to 6-formyltryptophan occurred slowly under neutral conditions with a first-order rate constant of 0.0039 min-1. This process, however, was accelerated by 10(4)-fold upon deprotonation of the indolyl nitrogen (N-1) at high pH. Tryptophanase did not detectably facilitate this hydrolysis reaction, since no protein-dependent conversion of the difluoromethyl group was detected. Instead, the enzyme accepted the fluorinated species as an analogue of tryptophan and catalyzed the corresponding formation of 6-(difluoromethyl)indole, pyruvate, and ammonium ion. Anionic intermediates are therefore not expected to form during the catalytic activation of the indolyl moiety. Instead, aromatic protonation likely promotes the release of indole during enzymatic degradation of tryptophan.  相似文献   

2.
Tryptophan synthase, an alpha 2 beta 2 complex, is a classic example of an enzyme that is thought to "channel" a metabolic intermediate (indole) from the active site of the alpha subunit to the active site of the beta subunit. We now examine the kinetics of substrate channeling by tryptophan synthase directly by chemical quench-flow and stopped-flow methods. The conversion of indole-3-glycerol phosphate (IGP) to tryptophan at the active site proceeds at a rate of 24 s-1, which is limited by the rate of cleavage of IGP to produce indole (alpha reaction). In a single turnover experiment monitoring the conversion of radiolabeled IGP to tryptophan, only a trace of indole is detectable (less than or equal to 1% of the IGP), implying that the reaction of indole to form tryptophan must be quite fast (greater than or equal to 1000 s-1). The rate of reaction of indole from solution is much too slow (40 s-1 under identical conditions) to account for the negligible accumulation of indole in a single turnover. Therefore, the indole produced at the alpha site must be rapidly channeled to the beta site, where it reacts with serine to form tryptophan: channeling and the reaction of indole to form tryptophan must each occur at rates greater than or equal to 1000 s-1. Steady-state turnover is limited by the slow rate of tryptophan release (8 s-1). In the absence of serine, the cleavage of IGP to indole is limited by a change in protein conformation at a rate of 0.16 s-1. When the alpha beta reaction is initiated by mixing enzyme with IGP and serine simultaneously, there is a lag in the cleavage IGP and formation of tryptophan. The kinetics of the lag correspond to the rate of formation of the aminoacrylate in the reaction of serine with pyridoxal phosphate at the beta site, measured by stopped-flow methods (45 s-1). There is also a change in protein fluorescence, suggestive of a change in protein conformation, occurring at the same rate. Substitution of cysteine for serine leads to a longer lag in the kinetics of IGP cleavage and a correspondingly slower rate of formation of the aminoacrylate (6 s-1). Thus, the reaction of serine at the beta site modulates the alpha reaction such that the formation of the aminoacrylate leads to a change in protein conformation that is transmitted to the alpha site to enhance the rate of IGP cleavage 150-fold.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
S A Ahmed  B Martin  E W Miles 《Biochemistry》1986,25(15):4233-4240
Although tryptophan synthase catalyzes a number of pyridoxal phosphate dependent beta-elimination and beta-replacement reactions that are also catalyzed by tryptophanase, a principal and puzzling difference between the two enzymes lies in the apparent inability of tryptophan synthase to catalyze beta-elimination of indole from L-tryptophan. We now demonstrate for the first time that the beta 2 subunit and the alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli and from Salmonella typhimurium do catalyze a slow beta-elimination reaction with L-tryptophan to produce indole, pyruvate, and ammonia. The rate of the reaction is about 10-fold higher in the presence of the alpha subunit. The rate of indole production is increased about 4-fold when the aminoacrylate produced is converted to S-(hydroxyethyl)-L-cysteine by a coupled beta-replacement reaction with beta-mercaptoethanol. The rate of L-tryptophan cleavage is also increased when the indole produced is removed by extraction with toluene or by condensation with D-glyceraldehyde 3-phosphate to form indole-3-glycerol phosphate in a reaction catalyzed by the alpha subunit of tryptophan synthase. The amount of L-tryptophan cleavage is greatest in the presence of both beta-mercaptoethanol and D-glyceraldehyde 3-phosphate, which cause the removal of both products of cleavage. The cleavage reaction is not due to contaminating tryptophanase since the activity is not inhibited by (3R)-2,3-dihydro-L-tryptophan, a specific inhibitor of tryptophanase, but is inhibited by (3S)-2,3-dihydro-L-tryptophan, a specific inhibitor of tryptophan synthase. The cleavage reaction is also inhibited by D-tryptophan, the product of a slow racemization reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A N Lane  K Kirschner 《Biochemistry》1991,30(2):479-484
The physiological synthesis of L-tryptophan from indoleglycerol phosphate and L-serine catalyzed by the alpha 2 beta 2 bienzyme complex of tryptophan synthase requires spatial and dynamic cooperation between the two distant alpha and beta active sites. The carbanion of the adduct of L-tryptophan to pyridoxal phosphate accumulated during the steady state of the catalyzed reaction. Moreover, it was formed transiently and without a lag in single turnovers, and glyceraldehyde 3-phosphate was released only after formation of the carbanion. These and further data prove first that the affinity for indoleglycerol phosphate and its cleavage to indole in the alpha subunit are enhanced substantially by aminoacrylate bound to the beta subunit. This indirect activation explains why the turnover number of the physiological reaction is larger than that of the indoleglycerol phosphate cleavage reaction. Second, reprotonation of nascent tryptophan carbanion is rate limiting for overall tryptophan synthesis. Third, most of the indole generated in the active site of the alpha subunit is transferred directly to the active site of the beta subunit and only insignificant amounts pass through the solvent. Comparison of the single turnover rate constants with the known elementary rate constants of the partial reactions catalyzed by the alpha and beta active sites suggests that the cleavage reaction rather than the transfer of indole or its condensation with aminoacrylate is rate limiting for the formation of nascent tryptophan.  相似文献   

5.
The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.  相似文献   

6.
Different plant species produce a variety of terpenoid indole alkaloids, which are of interest as plant defensive secondary metabolites and as valuable pharmaceuticals. Although significant progress has been made, the mechanisms regulating the levels of this important class of compounds require continued elucidation. Previous precursor feeding studies have indicated that alkaloid accumulation can be improved during the exponential growth phase of hairy root cultures through enhanced tryptophan availability. To test this relationship, transgenic hairy root cultures of Catharanthus roseus were established with a glucocorticoid-inducible promoter controlling the expression of an Arabidopsis feedback-resistant anthranilate synthase alpha subunit. Enzyme assays demonstrated that the Arabidopsis alpha subunit is compatible with the native beta subunit and that anthranilate synthase activity is more resistant to tryptophan inhibition in induced than in uninduced extracts. The metabolic effects of expressing the feedback-resistant anthranilate synthase alpha subunit were also dramatic. Over a 6-day induction period during the late exponential growth phase, tryptophan and tryptamine specific yields increased from almost undetectable levels to 2.5 mg/g dry weight and from 25 microg/g to 267 microg/g dry weight, respectively. The greater than 300-fold increase in tryptophan levels observed in these studies under certain induction conditions compares favorably with the fold increases obtained in previous constitutive expression studies. Despite the large increases in tryptophan and tryptamine, the levels of most terpenoid indole alkaloids were not significantly altered, with the exception of lochnericine, which increased 81% after a 3-day induction period. These results suggest that terpenoid indole alkaloid levels are tightly controlled.  相似文献   

7.
The bacterial tryptophan synthase bienzyme complexes (with subunit composition alpha 2 beta 2) catalyze the last two steps in the biosynthesis of L-tryptophan. For L-tryptophan synthesis, indole, the common metabolite, must be transferred by some mechanism from the alpha-catalytic site to the beta-catalytic site. The X-ray structure of the Salmonella typhimurium tryptophan synthase shows the catalytic sites of each alpha-beta subunit pair are connected by a 25-30 A long tunnel [Hyde, C. C., Ahmed, S. A., Padlan, E. A., Miles, E. W., & Davies, D. R. (1988) J. Biol. Chem. 263, 17857-17871]. Since the S. typhimurium and Escherichia coli enzymes have nearly identical sequences, the E. coli enzyme must have a similar tunnel. Herein, rapid kinetic studies in combination with chemical probes that signal the bond formation step between indole (or nucleophilic indole analogues) and the alpha-aminoacrylate Schiff base intermediate, E(A-A), bound to the beta-site are used to investigate tunnel function in the E. coli enzyme. If the tunnel is the physical conduit for the transfer of indole from the alpha-site to the beta-site, then ligands that block the tunnel should also inhibit the rate at which indole and indole analogues from external solution react with E(A-A). We have found that when D,L-alpha-glycerol 3-phosphate (GP) is bound to the alpha-site, the rate of reaction of indole and nucleophilic indole analogues with E(A-A) is strongly inhibited. These compounds appear to gain access to the beta-site via the alpha-site and the tunnel, and this access is blocked by the binding of GP to the alpha-site. However, when small nucleophiles such as hydroxylamine, hydrazine, or N-methylhydroxylamine are substituted for indole, the rate of quinonoid formation is only slightly affected by the binding of GP. Furthermore, the reactions of L-serine and L-tryptophan with alpha 2 beta 2 show only small rate effects due to the binding of GP. From these experiments, we draw the following conclusions: (1) L-Serine and L-tryptophan gain access to the beta-site of alpha 2 beta 2 directly from solution. (2) The small effects of GP on the rates of the L-serine and L-tryptophan reactions are due to GP-mediated allosteric interactions between the alpha- and beta-sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The mechanism by which indole condenses with L-serine in the active site of tryptophan synthase was studied by the stopped-flow technique. The single turnover occurs by rapid binding of indole to the pre-formed enzyme--L-serine complex, followed by C--C bond formation, reprotonation of the alpha carbon carbanion of L-tryptophan, and its final release. The effects of isotopic substitution at C-3 of indole, of pH, and of the presence of indolepropanol phosphate on these processes were also studied. The mechanism of binding of indole complements the known mechanisms of binding of L-serine and L-tryptophan to give a detailed picture of the mechanism of catalysis. It invokes two competent species of enzyme--L-serine complexes, leading to a branched pathway for the central condensation process. The rates of dehydration of L-serine and reprotonation of the carbanion of L-tryptophan are probably limited by rearrangements at the active site. Analysis of absorption, fluorescence and circular dichroic spectra, as well as of published data on the stereoisomers obtained by reduction with borohydride, suggests that the rearrangement includes a reorientation of the pyridoxal phosphate C-4' atom. The mechanism provides a detailed framework for explaining all available information, including the activating effect of the alpha subunit on the reaction catalyzed by the beta 2 subunit.  相似文献   

9.
Tryptophan synthase catalyzes the last two steps in the biosynthesis of the amino acid tryptophan. The enzyme is an alpha beta beta alpha complex in mesophilic microorganisms. The alpha-subunit (TrpA) catalyzes the cleavage of indoleglycerol phosphate to glyceraldehyde 3-phosphate and indole, which is channeled to the active site of the associated beta-subunit (TrpB1), where it reacts with serine to yield tryptophan. The TrpA and TrpB1 proteins are encoded by the adjacent trpA and trpB1 genes in the trp operon. The genomes of many hyperthermophilic microorganisms, however, contain an additional trpB2 gene located outside of the trp operon. To reveal the properties and potential physiological role of TrpB2, the trpA, trpB1, and trpB2 genes of Thermotoga maritima were expressed heterologously in Escherichia coli, and the resulting proteins were purified and characterized. TrpA and TrpB1 form the familiar alpha beta beta alpha complex, in which the two different subunits strongly activate each other. In contrast, TrpB2 forms a beta(2)-homodimer that has a high catalytic efficiency k(cat)/K(m)(indole) because of a very low K(m)(indole) but does not bind to TrpA. These results suggest that TrpB2 acts as an indole rescue protein, which prevents the escape of this costly hydrophobic metabolite from the cell at the high growth temperatures of hyperthermophiles.  相似文献   

10.
Pyridoxal 5'-phosphate-dependent tryptophan synthase catalyzes the last two reactions of tryptophan biosynthesis, and is comprised of two distinct subunits, alpha and beta. TktrpA and TktrpB, which encode the alpha subunit and beta subunit of tryptophan synthase from a hyperthermophilic archaeon, Thermococcus kodakaraensis KOD1, were independently expressed in Escherichia coli and their protein products were purified. Tryptophan synthase complex (Tk-TS complex), obtained by heat treatment of a mixture of the cell-free extracts containing each subunit, was also purified. Gel-filtration chromatography revealed that Tk-TrpA was a monomer (alpha), Tk-TrpB was a dimer (beta2), and Tk-TS complex was a tetramer (alpha2 beta2). The Tk-TS complex catalyzed the overall alphabeta reaction with a specific activity of 110 micromol Trp per micromol active site per min under its optimal conditions (80 degrees C, pH 8.5). Individual activity of the alpha and beta reactions of the Tk-TS complex were 8.5 micromol indole per micromol active site per min (70 degrees C, pH 7.0) and 119 micromol Trp per micromol active site per min (90 degrees C, pH 7.0), respectively. The low activity of the alpha reaction of the Tk-TS complex indicated that turnover of the beta reaction, namely the consumption of indole, was necessary for efficient progression of the alpha reaction. The alpha and beta reaction activities of independently purified Tk-TrpA and Tk-TrpB were 10-fold lower than the respective activities detected from the Tk-TS complex, indicating that during heat treatment, each subunit was necessary for the other to obtain a proper conformation for high enzyme activity. Tk-TrpA showed only trace activities at all temperatures examined (40-85 degrees C). Tk-TrpB also displayed low levels of activity at temperatures below 70 degrees C. However, Tk-TrpB activity increased at temperatures above 70 degrees C, and eventually at 100 degrees C, reached an equivalent level of activity with the beta reaction activity of Tk-TS complex. Taking into account the results of circular dichroism analyses of the three enzymes, a model is proposed which explains the relationship between structure and activity of the alpha and beta subunits with changes in temperature. This is the first report of an archaeal tryptophan synthase, and the first biochemical analysis of a thermostable tryptophan synthase at high temperature.  相似文献   

11.
H Wiesinger  H J Hinz 《Biochemistry》1984,23(21):4928-4934
The binding of indole and L-serine to the isolated alpha and beta 2 subunits and the native alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli was investigated by direct microcalorimetry to reveal the energetic adaptation of ligand binding to the subunit structure of a multienzyme complex. In contrast to the general finding that negative heat capacity changes are associated with ligand binding to proteins, complex formation of indole and the alpha subunit involves a small positive change in heat capacity. This unusual result was considered as being indicative of a loosening of the protein structure. Such an interpretation is in good agreement with results of chemical accessibility studies (Freedberg & Hardman, 1971). Whereas the thermodynamic parameters of indole binding are not influenced by the subunit interaction, the large negative change in heat capacity of -6.5 kJ/(K X mol of beta 2) measured for the binding of L-serine to the isolated beta 2 subunit disappears completely when serine interacts with the tetrameric complex. These data demonstrate that the energy transduction pattern and therefore the functional roles of the substrates indole and L-serine vary strongly with the subunit structure of tryptophan synthase.  相似文献   

12.
The putative prenyltransferase gene ACLA_031240 belonging to the dimethylallyltryptophan synthase superfamily was identified in the genome sequence of Aspergillus clavatus and overexpressed in Escherichia coli. The soluble His-tagged protein EAW08391 was purified to near homogeneity and used for biochemical investigation with diverse aromatic substrates in the presence of different prenyl diphosphates. It has shown that in the presence of dimethylallyl diphosphate (DMAPP), the recombinant enzyme accepted very well simple indole derivatives with L-tryptophan as the best substrate. Product formation was also observed for tryptophan-containing cyclic dipeptides but with much lower conversion yields. In contrast, no product formation was detected in the reaction mixtures of L-tryptophan with geranyl or farnesyl diphosphate. Structure elucidation of the enzyme products by NMR and MS analyses proved unequivocally the highly regiospecific regular prenylation at C-5 of the indole nucleus of the simple indole derivatives. EAW08391 was therefore termed 5-dimethylallyltryptophan synthase, and it filled the last gap in the toolbox of indole prenyltransferases regarding their prenylation positions. K(m) values of 5-dimethylallyltryptophan synthase were determined for L-tryptophan and DMAPP at 34 and 76 μM, respectively. Average turnover number (k(cat)) at 1.1 s(-1) was calculated from kinetic data of L-tryptophan and DMAPP. Catalytic efficiencies of 5-dimethylallyltryptophan synthase for L-tryptophan at 25,588 s(-1)·M(-1) and for other 11 simple indole derivatives up to 1538 s(-1)·M(-1) provided evidence for its potential usage as a catalyst for chemoenzymatic synthesis.  相似文献   

13.
The three-dimensional structure of the bifunctional tryptophan synthase alpha(2)beta(2) complex from Pyrococcus furiosus was determined by crystallographic analysis. This crystal structure, with the structures of an alpha subunit monomer and a beta(2) subunit dimer that have already been reported, is the first structural set in which changes in structure that occur upon the association of the individual tryptophan synthase subunits were observed. To elucidate the structural basis of the stimulation of the enzymatic activity of each of the alpha and beta(2) subunits upon alpha(2)beta(2) complex formation, the conformational changes due to complex formation were analyzed in detail compared with the structures of the alpha monomer and beta(2) subunit dimer. The major conformational changes due to complex formation occurred in the region correlated with the catalytic function of the enzyme as follows. (1) Structural changes in the beta subunit were greater than those in the alpha subunit. (2) Large movements of A46 and L165 in the alpha subunit due to complex formation caused a more open conformation favoring the entry of the substrate at the alpha active site. (3) The major changes in the beta subunit were the broadening of a long tunnel through which the alpha subunit product (indole) is transferred to the beta active site and the opening of an entrance at the beta active site. (4) The changes in the conformations of both the alpha and beta subunits due to complex formation contributed to the stabilization of the subunit association, which is critical for the stimulation of the enzymatic activities.  相似文献   

14.
W F Drewe  M F Dunn 《Biochemistry》1986,25(9):2494-2501
The pre-steady-state reaction of indole and L-serine with the alpha 2 beta 2 complex of Escherichia coli tryptophan synthase has been investigated under different premixing conditions with rapid-scanning stopped-flow (RSSF) UV-visible spectroscopy for the spectral range 300-550 nm. When alpha 2 beta 2 was mixed with indole and L-serine, the reaction of alpha 2 beta 2 was found to occur in three detectable relaxations (1/tau 1 greater than 1/tau 2 greater than 1/tau 3) with rate constants identical with the three relaxations seen in the partial reaction with L-serine [Drewe, W.F., Jr., & Dunn, M.F. (1985) Biochemistry 24, 3977-3987]. Kinetic isotope effects due to substitution of 2H for the alpha-1H of serine were found to be similar to the effects observed in the reaction with serine only. The observed spectral changes and isotope effects indicate that the aldimine of L-serine and PLP and the first quinoid derived from this external aldimine are transient species that accumulate during tau 1. Conversion of these intermediates to the alpha-aminoacrylate Schiff base during tau 2 and tau 3 limits the rate of formation of the second quinoidal species (lambda max 476 nm) generated via C-C bond formation between indole and the alpha-aminoacrylate intermediate. The pre-steady-state reaction of the alpha 2 beta 2-serine mixture with indole is comprised of four relaxations (1/tau 1* greater than 1/tau 2* greater than 1/tau 3* greater than 1/tau 4*).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The alpha subunit of the Escherichia coli tryptophan synthase catalyzes the reversible aldolytic reaction: Indole-3-glycerol phosphate in equilibrium indole + glyceraldehyde 3-phosphate. The use of 5-azidoindole as a photoaffinity label has made the generation of a number of enzyme-substrate complexes possible, each with a given degree of saturation of the two postulated indole sites. When assayed in the reverse reaction (indole-3-glycerol phosphate synthesis), samples of alpha subunit treated at concentrations of 5-azidoindole less than or equal to 2 mM show a progressive 30-40% activation. A gradual inactivation occurs only in samples irradiated at concentrations in excess of 2 mM 5-azidoindole, and this inactivation is complete at 8-10 mM. A quantitatively similar activation occurs in the forward reaction (indole synthesis), however inactivation in this case is incomplete, with complexes treated at 8-12 mM 5-azidoindole retaining 30-40% relative activity in this reaction. When treated alpha subunits were assayed for their abilities to complement the beta 2-subunit in the reactions indole + L-serine leads to L-tryptophan + H2O and indole-3-glycerol phosphate + L-serine leads to L-tryptophan + glyceraldehyde 3-phosphate, quantitatively lesser amounts of activation followed by total inactivation are observed over a similar range of 5-azidoindole concentrations.  相似文献   

16.
orange pericarp (orp) is a seedling lethal mutant of maize caused by mutations in the duplicate unlinked recessive loci orp1 and orp2. Mutant seedlings accumulate two tryptophan precursors, anthranilate and indole, suggesting a block in tryptophan biosynthesis. Results from feeding studies and enzyme assays indicate that the orp mutant is defective in tryptophan synthase beta activity. Thus, orp is one of only a few amino acid auxotrophic mutants to be characterized in plants. Two genes encoding tryptophan synthase beta were isolated from maize and sequenced. Both genes encode polypeptides with high homology to tryptophan synthase beta enzymes from other organisms. The cloned genes were mapped by restriction fragment length polymorphism analysis to approximately the same chromosomal locations as the genetically mapped factors orp1 and orp2. RNA analysis indicates that both genes are expressed in all tissues examined from normal plants. Together, the biochemical, genetic, and molecular data verify the identity of orp1 and orp2 as duplicate structural genes for the beta subunit of tryptophan synthase.  相似文献   

17.
A. J. Barczak  J. Zhao  K. D. Pruitt    R. L. Last 《Genetics》1995,140(1):303-313
A study of the biochemical genetics of the Arabidopsis thaliana tryptophan synthase beta subunit was initiated by characterization of mutants resistant to the inhibitor 5-fluoroindole. Thirteen recessive mutations were recovered that are allelic to trp2-1, a mutation in the more highly expressed of duplicate tryptophan synthase beta subunit genes (TSB1). Ten of these mutations (trp2-2 through trp2-11) cause a tryptophan requirement (auxotrophs), whereas three (trp2-100 through trp2-102) remain tryptophan prototrophs. The mutations cause a variety of changes in tryptophan synthase beta expression. For example, two mutations (trp2-5 and trp2-8) cause dramatically reduced accumulation of TSB mRNA and immunologically detectable protein, whereas trp2-10 is associated with increased mRNA and protein. A correlation exists between the quantity of mutant beta and wild-type alpha subunit levels in the trp2 mutant plants, suggesting that the synthesis of these proteins is coordinated or that the quantity or structure of the beta subunit influences the stability of the alpha protein. The level of immunologically detectable anthranilate synthase alpha subunit protein is increased in the trp2 mutants, suggesting the possibility of regulation of anthranilate synthase levels in response to tryptophan limitation.  相似文献   

18.
Trifluoroalanine is a mechanism-based inactivator of Escherichia coli tryptophan indole-lyase (tryptophanase) and E. coli tryptophan synthase (R. B. Silverman and R. H. Abeles, 1976, Biochemistry 15, 4718-4723). We have found that indole is able to prevent inactivation of tryptophan indole-lyase by trifluoroalanine. The protection of tryptophan indole-lyase by indole exhibits saturation kinetics, with a KD of 0.03 mM, which is comparable to the KI for inhibition of pyruvate ion formation (0.01 mM) and the Km for L-tryptophan synthesis. Fluoride electrode measurements indicate the formation of 28 mol of fluoride ion per mole of enzyme during inactivation of tryptophan indole-lyase, and 121 mol of fluoride ion are formed per mole of enzyme in the presence of 2 mM indole during the same incubation period. 19F NMR spectra of reaction mixtures of tryptophan indole-lyase and trifluoroalanine showed evidence only for fluoride ion formation, in either the absence or the presence of indole, and difluoropyruvic acid was not detected. The partition ratio, kcat/kinact, is estimated to be 9. Tryptophan indole-lyase in the presence of trifluoroalanine exhibits visible absorption peaks at 446 and 478 nm, which decay at the same rate as inactivation. However, in the presence of 1 mM indole and trifluoralanine, tryptophan indole-lyase exhibits a peak only at 420 nm, and the spectra show a gradual increase at 300-310 nm with incubation. In contrast, tryptophan synthase is not protected by indole from inactivation by trifluoroalanine, and the absorption peak at 408 nm for the tryptophan synthase-trifluoroalanine complex is unaffected by indole. These results demonstrate that inactivation of tryptophan indole-lyase occurs via a catalytically competent species, probably the beta,beta-difluoro-alpha-aminoacrylate intermediate, which can be partitioned from inactivation to products by a reactive aromatic nucleophile, indole.  相似文献   

19.
The rate of quenching of the fluorescence of pyridoxal 5'-phosphate in the active site of the beta 2 subunit of tryptophan synthase from Escherichia coli was measured to estimate the accessibility of the coenzyme to the small molecules iodide and acrylamide. The alpha subunit and the substrate L-serine substantially reduced the quenching rate. For iodide, the order of decreasing quenching was: Schiff's base of N alpha-acetyl-lysine with pyridoxal 5'-phosphate greater than holo beta 2 subunit greater than holo alpha 2 beta 2 complex approximately equal to holo beta 2 subunit + L-serine greater than holo alpha 2 beta 2 complex + L-serine. The coenzyme in the beta 2 subunit is apparently freely accessible to both iodide and acrylamide (kappa approximately equal to 2 X 10(9) M-1 s-1), but the alpha subunit and L-serine decrease the rate by factors of 2-5. Quenching of the fluorescence of the single tryptophan residue of the beta 2 subunit revealed that the apo and holo forms exist in different states, whereas the alpha subunit stabilizes a third conformation. As the alpha subunit binds to the beta 2 subunit, the tryptophan residue, which is within 2.2 nm of the active site of the beta 2 subunit, probably rotates with respect to the plane of the ring of the coenzyme, such that fluorescence energy transfer from tryptophan to pyridoxal phosphate is greatly reduced. The alpha subunit strongly protects the active-site ligand indole propanol phosphate from quenching with acrylamide, consistent with the active site being deep in a cleft in the protein. Iodide induces dissociation of the holo alpha 2 beta 2 complex [E. W. Miles & M. Moriguchi (1977) J. Biol. Chem. 252, 6594-6599]. The effect of iodide on the fluorescence properties of holo alpha 2 beta 2 complex allows us to estimate an upper limit for the dissociation constant for the alpha 2 beta 2 complex of 10(-8) M, in the absence of iodide.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号