首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα−/− mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα−/− mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα−/− mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα−/− mice and the advances that are now possible with the use of adult, rescued knockout animals.  相似文献   

2.
3.
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.  相似文献   

4.
5.
6.
The pleiotropic cytokine transforming growth factor (TGF)-β1 is a key player in the onset of skeletal muscle fibrosis, which hampers tissue repair. However, the molecular mechanisms implicated in TGFβ1-dependent transdifferentiation of myoblasts into myofibroblasts are presently unknown. Here, we show that TGFβ1 up-regulates sphingosine kinase (SK)-1 in C2C12 myoblasts in a Smad-dependent manner, and concomitantly modifies the expression of sphingosine 1-phosphate (S1P) receptors (S1PRs). Notably, pharmacological or short interfering RNA-mediated inhibition of SK1 prevented the induction of fibrotic markers by TGFβ1. Moreover, inhibition of S1P3, which became the highest expressed S1PR after TGFβ1 challenge, strongly attenuated the profibrotic response to TGFβ1. Furthermore, downstream of S1P3, Rho/Rho kinase signaling was found critically implicated in the profibrotic action of TGFβ1. Importantly, we demonstrate that SK/S1P axis, known to play a key role in myogenesis via S1P2, consequently to TGFβ1-dependent S1PR pattern remodeling, becomes responsible for transmitting a profibrotic, antidifferentiating action. This study provides new compelling information on the mechanism by which TGFβ1 gives rise to fibrosis in skeletal muscle, opening new perspectives for its pharmacological treatment. Moreover, it highlights the pleiotropic role of SK/S1P axis in skeletal myoblasts that, depending on the expressed S1PR pattern, seems capable of eliciting multiple, even contrasting biological responses.  相似文献   

7.
8.
9.
Phosphoinositide 3-OH kinase (PI3K) regulates a number of developmental and physiologic processes in skeletal muscle; however, the contributions of individual PI3K p110 catalytic subunits to these processes are not well-defined. To address this question, we investigated the role of the 110-kDa PI3K catalytic subunit β (p110β) in myogenesis and metabolism. In C2C12 cells, pharmacological inhibition of p110β delayed differentiation. We next generated mice with conditional deletion of p110β in skeletal muscle (p110β muscle knockout [p110β-mKO] mice). While young p110β-mKO mice possessed a lower quadriceps mass and exhibited less strength than control littermates, no differences in muscle mass or strength were observed between genotypes in old mice. However, old p110β-mKO mice were less glucose tolerant than old control mice. Overexpression of p110β accelerated differentiation in C2C12 cells and primary human myoblasts through an Akt-dependent mechanism, while expression of kinase-inactive p110β had the opposite effect. p110β overexpression was unable to promote myoblast differentiation under conditions of p110α inhibition, but expression of p110α was able to promote differentiation under conditions of p110β inhibition. These findings reveal a role for p110β during myogenesis and demonstrate that long-term reduction of skeletal muscle p110β impairs whole-body glucose tolerance without affecting skeletal muscle size or strength in old mice.  相似文献   

10.
The link between AMP-activated protein kinase (AMPK) and myogenesis remains poorly defined. AMPK has two catalytic α subunits, α1 and α2. We postulated that AMPK promotes myogenesis in an isoform-specific manner. Primary myoblasts were prepared from AMPK knockout (KO) mice and AMPK conditional KO mice, and knockout of the α1 but not the α2 subunit resulted in downregulation of myogenin and reduced myogenesis. Myogenin expression and myogenesis were nearly abolished in the absence of both AMPKα1 and AMPKα2, while enhanced AMPK activity promoted myogenesis and myotube formation. The AMPKα1-specific effect on myogenesis was likely due to the dominant expression of α1 in myoblasts. These results were confirmed in C2C12 cells. To further evaluate the necessity of the AMPKα1 subunit for myogenesis in vivo, we prepared both DsRed AMPKα1 knockout myoblasts and enhanced green fluorescent protein (EGFP) wild-type myoblasts, which were cotransplanted into tibialis anterior muscle. A number of green fluorescent muscle fibers were observed, showing the fusion of engrafted wild-type myoblasts with muscle fibers; on the other hand, very few or no red muscle fibers were observed, indicating the absence of myogenic capacity of AMPKα1 knockout myoblasts. In summary, these results indicate that AMPK activity promotes myogenesis through a mechanism mediated by AMPKα1.  相似文献   

11.

Background

Intramyocellular lipid accumulation is strongly related to insulin resistance in humans, and we have shown that high glucose concentration induced de novo lipogenesis and insulin resistance in murin muscle cells. Alterations in Wnt signaling impact the balance between myogenic and adipogenic programs in myoblasts, partly due to the decrease of Wnt10b protein. As recent studies point towards a role for Wnt signaling in the pathogenesis of type 2 diabetes, we hypothesized that activation of Wnt signaling could play a crucial role in muscle insulin sensitivity.

Methodology/Principal Findings

Here we demonstrate that SREBP-1c and Wnt10b display inverse expression patterns during muscle ontogenesis and regeneration, as well as during satellite cells differentiation. The Wnt/β-catenin pathway was reactivated in contracting myotubes using siRNA mediated SREBP-1 knockdown, Wnt10b over-expression or inhibition of GSK-3β, whereas Wnt signaling was inhibited in myoblasts through silencing of Wnt10b. SREBP-1 knockdown was sufficient to induce Wnt10b protein expression in contracting myotubes and to activate the Wnt/β-catenin pathway. Conversely, silencing Wnt10b in myoblasts induced SREBP-1c protein expression, suggesting a reciprocal regulation. Stimulation of the Wnt/β-catenin pathway i) drastically decreased SREBP-1c protein and intramyocellular lipid deposition in myotubes; ii) increased basal glucose transport in both insulin-sensitive and insulin-resistant myotubes through a differential activation of Akt and AMPK pathways; iii) restored insulin sensitivity in insulin-resistant myotubes.

Conclusions/Significance

We conclude that activation of Wnt/β-catenin signaling in skeletal muscle cells improved insulin sensitivity by i) decreasing intramyocellular lipid deposition through downregulation of SREBP-1c; ii) increasing insulin effects through a differential activation of the Akt/PKB and AMPK pathways; iii) inhibiting the MAPK pathway. A crosstalk between these pathways and Wnt/β-catenin signaling in skeletal muscle opens the exciting possibility that organ-selective modulation of Wnt signaling might become an attractive therapeutic target in regenerative medicine and to treat obese and diabetic populations.  相似文献   

12.
Several experiments sustain healthful benefits of the flavanone naringenin (Nar) against chronic diseases including its protective effects against estrogen-related cancers. These experiments encourage Nar use in replacing estrogen treatment in post-menopausal women avoiding the serious side effects ascribed to this hormone. However, at the present, scarce data are available on the impact of Nar on E2-regulated cell functions. This study was aimed at determining the impact of Nar on the estrogen receptor (ERα and β)-dependent signals important for 17β-estradiol (E2) effect in muscle cells (rat L6 myoblasts, mouse C2C12 myoblasts, and mouse skeletal muscle satellite cells). Dietary relevant concentration of Nar delays the appearance of skeletal muscle differentiation markers (i.e., GLUT4 translocation, myogenin, and both fetal and slow MHC isoforms) and impairs E2 effects specifically hampering ERα ability to activate AKT. Intriguingly, Nar effects are specific for E2-initiating signals because IGF-I-induced AKT activation, and myoblast differentiation markers were not affected by Nar treatment. Only 7 days after Nar stimulation, early myoblast differentiation markers (i.e., myogenin, and fetal MHC) start to be accumulated in myoblasts. On the other hand, Nar stimulation activates, via ERβ, the phosphorylation of p38/MAPK involved in reducing the reactive oxygen species formation in skeletal muscle cells. As a whole, data reported here strongly sustain that although Nar action mechanisms include the impairment of ERα signals which drive muscle cells to differentiation, the effects triggered by Nar in the presence of ERβ could balance this negative effect avoiding the toxic effects produced by oxidative stress .

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0425-3) contains supplementary material, which is available to authorized users.  相似文献   

13.
AMP-activated protein kinase (AMPK) β subunits (β1 and β2) provide scaffolds for binding α and γ subunits and contain a carbohydrate-binding module important for regulating enzyme activity. We generated C57Bl/6 mice with germline deletion of AMPK β2 (β2 KO) and examined AMPK expression and activity, exercise capacity, metabolic control during muscle contractions, aminoimidazole carboxamide ribonucleotide (AICAR) sensitivity, and susceptibility to obesity-induced insulin resistance. We find that β2 KO mice are viable and breed normally. β2 KO mice had a reduction in skeletal muscle AMPK α1 and α2 expression despite up-regulation of the β1 isoform. Heart AMPK α2 expression was also reduced but this did not affect resting AMPK α1 or α2 activities. AMPK α1 and α2 activities were not changed in liver, fat, or hypothalamus. AICAR-stimulated glucose uptake but not fatty acid oxidation was impaired in β2 KO mice. During treadmill running β2 KO mice had reduced maximal and endurance exercise capacity, which was associated with lower muscle and heart AMPK activity and reduced levels of muscle and liver glycogen. Reductions in exercise capacity of β2 KO mice were not due to lower muscle mitochondrial content or defects in contraction-stimulated glucose uptake or fatty acid oxidation. When challenged with a high-fat diet β2 KO mice gained more weight and were more susceptible to the development of hyperinsulinemia and glucose intolerance. In summary these data show that deletion of AMPK β2 reduces AMPK activity in skeletal muscle resulting in impaired exercise capacity and the worsening of diet-induced obesity and glucose intolerance.  相似文献   

14.
15.
Developmental Expression of Spectrins in Rat Skeletal Muscle   总被引:2,自引:1,他引:1       下载免费PDF全文
Skeletal muscle contains spectrin (or spectrin I) and fodrin (or spectrin II), members of the spectrin supergene family. We used isoform-specific antibodies and cDNA probes to investigate the molecular forms, developmental expression, and subcellular localization of the spectrins in skeletal muscle of the rat. We report that β-spectrin (βI) replaces β-fodrin (βII) at the sarcolemma as skeletal muscle fibers develop. As a result, adult muscle fibers contain only α-fodrin (αII) and the muscle isoform of β-spectrin (βIΣ2). By contrast, other types of cells present in skeletal muscle tissue, including blood vessels and nerves, contain only α- and β-fodrin. During late embryogenesis and early postnatal development, skeletal muscle fibers contain a previously unknown form of spectrin complex, consisting of α-fodrin, β-fodrin, and the muscle isoform of β-spectrin. These complexes associate with the sarcolemma to form linear membrane skeletal structures that otherwise resemble the structures found in the adult. Our results suggest that the spectrin-based membrane skeleton of muscle fibers can exist in three distinct states during development.  相似文献   

16.
17.
Aging results in a loss of muscle mass and strength. Myoblasts play an important role in maintaining muscle mass through regenerative processes, which are impaired during aging. Vitamin E potentially ameliorates age-related phenotypes. Hence, this study aimed to determine the effects of the tocotrienol-rich fraction (TRF) and α-tocopherol (ATF) in protecting myoblasts from replicative senescence and promoting myogenic differentiation. Primary human myoblasts were cultured into young and senescent stages and were then treated with TRF or ATF for 24 h, followed by an analysis of cell proliferation, senescence biomarkers, cellular morphology and differentiation. Our data showed that replicative senescence impaired the normal regenerative processes of myoblasts, resulting in changes in cellular morphology, cell proliferation, senescence-associated β-galactosidase (SA-β-gal) expression, myogenic differentiation and myogenic regulatory factors (MRFs) expression. Treatment with both TRF and ATF was beneficial to senescent myoblasts in reclaiming the morphology of young cells, improved cell viability and decreased SA-β-gal expression. However, only TRF treatment increased BrdU incorporation in senescent myoblasts, as well as promoted myogenic differentiation through the modulation of MRFs at the mRNA and protein levels. MYOD1 and MYOG gene expression and myogenin protein expression were modulated in the early phases of myogenic differentiation. In conclusion, the tocotrienol-rich fraction is superior to α-tocopherol in ameliorating replicative senescence-related aberration and promoting differentiation via modulation of MRFs expression, indicating vitamin E potential in modulating replicative senescence of myoblasts.  相似文献   

18.
19.
20.
Inflammation is widely distributed in patients with Duchenne muscular dystrophy and ultimately leads to progressive deterioration of muscle function with chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzyme heme oxygenase-1 and inhibition of the NF-κB signaling pathway. However, the role of Nrf2 in the inflammation of dystrophic muscle remains unknown. To determine whether Nrf2 may counteract inflammation in dystrophic muscle, we treated 4-week-old male mdx mice with the Nrf2 activator sulforaphane (SFN) by gavage (2 mg/kg of body weight/day) for 4 weeks. The experimental results demonstrated that SFN treatment increased the expression of muscle phase II enzyme heme oxygenase-1 in an Nrf2-dependent manner. Inflammation in mice was reduced by SFN treatment as indicated by decreased infiltration of immune cells and expression of the inflammatory cytokine CD45 and proinflammatory cytokines tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the skeletal muscles of mdx mice. In addition, SFN treatment also decreased the expression of NF-κB(p65) and phosphorylated IκB kinase-α as well as increased inhibitor of κB-α expression in mdx mice in an Nrf2-dependent manner. Collectively, these results show that SFN-induced Nrf2 can alleviate muscle inflammation in mdx mice by inhibiting the NF-κB signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号