首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen represents the major brain energy reserve though its precise functions are still under debate. Glycogen has also been found in different cell types of the enteric nervous system (ENS), the largest and most complex component of the peripheral nervous system. In the present work we have demonstrated, by application of isozyme-specific antibodies, the presence of isozymes of glycogen phosphorylase (GP), one of the major control sites in glycogen metabolism, in the rat ENS. Immunohistochemistry revealed that isoform BB (brain) is the predominant isozyme expressed in enteric glial cells (EGC) and rare neurons of the myenteric and submucosal plexuses. Isoform MM (muscle) appears in cells which are, according to their location and morphology, probably interstitial cells of Cajal (ICC). In addition, both GP isoforms are expressed in longitudinal and circular intestinal smooth muscle layers. As GP BB is mainly regulated by the cellular AMP level, a special function of glycogen in the energy supply of neural gut functions is suggested.  相似文献   

2.
3.
In the skeletal muscles of the chick embryo from the 10th till the 15th day of embryogenesis, phosphorylase (EC. 2.4.1.1) is represented by two isozymes one of which corresponds, by electrophoretic mobility, to the liver phosphorylase and another to phosphorylase of the skeletal muscles of the adult rat. From the 17th day of embryogenesis on only one isozyme of phosphorylase is found in the skeletal muscles which is identical with that of the skeletal muscles of the adult bird. The isozyme spectrum of phosphorylase of the whole 4 days old embryo contains, besides phosphorylase L, a special "embryonic" isozyme which differs from that of the skeletal muscles by immunochemical characteristics and electrophoretic mobility. From the 10th day of embryogenesis till hatching, the activity of phosphorylase of the skeletal muscles increases more than 50 times and that of glycogen synthetase (EC. 2.4.1.11) only 4 times.  相似文献   

4.
Paraffin-embedded sections from paraformaldehyde-fixed rat brain were stained immunocytochemically for glycogen phosphorylase brain isozyme BB, using a monoclonal mouse antibody and the biotin-strept-avidin method, with either horseradish peroxidase or beta-galactosidase as marker enzymes. Two cell types showed strong glycogen phosphorylase-immunoreactivity: Astrocytes and ependymal cells. Most intensive staining was observed in the cerebellar cortex, the neocortex and the hippocampus. Astrocytes in the cerebellar white matter stained positively. The choroid plexus cells stained poorly or not at all. Neurons throughout the brain were negative, as well as oligodendrocytes and bundles of myelinated nerve fibers. These data are consistent with the immunocytochemical localization of glycogen phosphorylase in astroglia-rich primary cultures derived from rat brain.  相似文献   

5.
Glycogen phosphorylases catalyze the regulated breakdown of glycogen to glucose-1-phosphate. In mammals, glycogen phosphorylase occurs in three different isozymes called liver, muscle, and brain after the tissues in which they are preferentially expressed. The muscle isozyme binds and is activated cooperatively by AMP. In contrast, the liver enzyme binds AMP noncooperatively and is poorly activated. The amino acid sequence of human liver phosphorylase is 80% identical with rabbit muscle phosphorylase, and those residues which contact AMP are conserved. Using computer graphics software, we replaced side chains of the known rabbit muscle structure with those of human liver phosphorylase and interpreted the effects of these changes in order to account for the biochemical differences between them. We have identified two substitutions in liver phosphorylase potentially important in altering the cooperative binding and activation of this isozyme by AMP.  相似文献   

6.
Summary Paraffin-embedded sections from paraformaldehyde-fixed rat brain were stained immunocytochemically for glycogen phosphorylase brain isozyme BB, using a monoclonal mouse antibody and the biotin-streptavidin method, with either horseradish peroxidase or -galactosidase as marker enzymes. Two cell types showed strong glycogen phosphorylase-immunoreactivity: Astrocytes and ependymal cells. Most intensive staining was observed in the cerebellar cortex, the neocortex and the hippocampus. Astrocytes in the cerebellar white matter stained positively. The choroid plexus cells stained poorly or not at all. Neurons throughout the brain were negative, as well as oligodendrocytes and bundles of myelinated nerve fibers. These data are consistent with the immunocytochemical localization of glycogen phosphorylase in astroglia-rich primary cultures derived from rat brain.  相似文献   

7.
Isozymes of creatine kinase and glycogen phosphorylase are excellent markers of skeletal muscle maturation. In adult innervated muscle only the muscle-gene-specific isozymes are present, whereas aneurally cultured human muscle has predominantly the fetal pattern of isozymes. We have studied the isozyme pattern of human muscle cultured in monolayer and innervated by rat embryo spinal cord explants for 20-42 d. In this culture system, large groups of innervated muscle fibers close to the ventral part of the spinal cord explant continuously contracted. The contractions were reversibly blocked by 1 mM d-tubocurarine. In those innervated fibers, the total activity and the muscle-gene-specific isozymes of both enzymes increased significantly. The amount of muscle-gene-specific isozymes directly correlated with the duration of innervation. Control noninnervated muscle fibers from the same dishes as the innervated fibers remained biochemically immature. This study demonstrated that de novo innervation of human muscle cultured in monolayer exerts a time-related maturational influence that is not mediated by a diffusable neural factor.  相似文献   

8.
The physiological function in brain of glycogen and the enzyme catalyzing the rate-limiting step in glycogenolysis, glycogen phosphorylase (EC 2.4.1.1), is unknown. As a first step toward elucidating such a function, we have purified bovine brain glycogen phosphorylase isozyme BB 1,700-fold to a specific activity of 24 units/mg protein. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent silver staining, a single major protein band corresponding to an apparent molecular mass of 97 kDa was observed. Mouse monoclonal antibodies raised against the enzyme were purified and shown to be monospecific as indicated by immunoblotting. Immunocytochemical examination of astroglia-rich primary cultures of rat brain cells revealed a colocalization of glycogen phosphorylase with the astroglial marker glial fibrillary acidic protein in many cells. The staining for the enzyme appeared at two levels of intensity. There were other cells in the culture showing no specific staining under the experimental conditions employed. Neurons in neuron-rich primary cultures did not show positive staining. The data suggest that glycogen phosphorylase may be predominantly an astroglial enzyme and that astroglia cells play an important role in the energy metabolism of the brain.  相似文献   

9.
Liver and muscle glycogen phosphorylases, which are products of distinct genes, are both activated by covalent phosphorylation, but in the unphosphorylated (b) state, only the muscle isozyme is efficiently activated by the allosteric activator AMP. The different responsiveness of the phosphorylase isozymes to allosteric ligands is important for the maintenance of tissue and whole body glucose homeostasis. In an attempt to understand the structural determinants of differential sensitivity of the muscle and liver isozymes to AMP, we have developed a bacterial expression system for the liver enzyme, allowing native and engineered proteins to be expressed and characterized. Engineering of the single amino acid substitutions Thr48Pro, Met197Thr and the double mutant Thr48Pro, Met197Thr in liver phosphorylase, and Pro48Thr in muscle phosphorylase, did not qualitatively change the response of the two isozymes to AMP. These sites had previously been implicated in the configuration of the AMP binding site. However, when nine amino acids among the first 48 in liver phosphorylase were replaced with the corresponding muscle phosphorylase residues (L1M2-48L49-846), the engineered liver enzyme was activated by AMP to a higher maximal activity than native liver phosphorylase. Interestingly, the homotropic cooperativity of AMP binding was unchanged in the engineered phosphorylase b protein, and heterotropic cooperativity between the glucose-1-phosphate and AMP sites was only slightly enhanced. The native liver, native muscle and L1M2-48L49-846 phosphorylases were converted to the a form by treatment with purified phosphorylase kinase; the maximal activity of the chimeric a enzyme was greater than the native liver a enzyme and approached that of muscle phosphorylase a. From these results we suggest that tissue-specific phosphorylase isozymes have evolved a complex mechanism in which the N-terminal 48 amino acids modulate intrinsic activity (Vmax), probably by affecting subunit interactions, and other, as yet undefined regions specify the allosteric interactions with ligands and substrates.  相似文献   

10.
11.
The muscle isozyme of glycogen phosphorylase is potently activated by the allosteric ligand AMP, whereas the liver isozyme is not. In this study we have investigated the metabolic impact of expression of muscle phosphorylase in liver cells. To this end, we constructed a replication-defective, recombinant adenovirus containing the muscle glycogen phosphorylase cDNA (termed AdCMV-MGP) and used this system to infect hepatocytes in culture. AMP-activatable glycogen phosphorylase activity was increased 46-fold 6 days after infection of primary liver cells with AdCMV-MGP. Despite large increases in phosphorylase activity, glycogen levels were only slightly reduced in AdCMV-MGP-infected liver cells compared to uninfected cells or cells infected with wild-type adenovirus. The lack of correlation of phosphorylase activity and glycogen content suggests that the liver cell environment can inhibit the muscle phosphorylase isozyme. This inhibition can be overcome, however, by addition of carbonyl cyanide m-chlorophenylhydrazone (CCCP), which increases AMP levels by 30-fold and causes a much larger decrease in glycogen levels in AdCMV-MGP-infected cells than in uninfected or wild-type adenovirus-infected controls. CCCP treatment also caused a preferential decrease in glycogen content relative to glucagon treatment in AdCMV-MGP-infected hepatocytes (74% versus 11%, respectively), even though the two drugs caused equal increases in phosphorylase a activity. Introduction of muscle phosphorylase into hepatocytes therefore confers a capacity for glycogenolytic response to effectors that is not provided by the endogenous liver phosphorylase isozyme. The remarkable efficiency of adenovirus-mediated gene transfer into primary hepatocytes and the demonstration of altered regulation of glycogen metabolism as a consequence of expression of a non-cognate phosphorylase isozyme may have implications for gene therapy of glycogen storage diseases.  相似文献   

12.
Mammalian glycogen phosphorylases comprise a family of isozymes that are expressed selectively in a variety of cell types. As an initial step towards understanding the molecular processes that regulate the differential expression of the phosphorylase family, we have begun a quantitative examination of isozyme expression in vivo. In this paper, we report quantitative estimates of the amounts of the muscle (M) isozyme and its mRNA in adult rat tissues. Quantitative estimates of the amount of M-phosphorylase were obtained by an analysis involving electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose filters and sequential treatment with M-isozyme specific antibody and radioactively- labeled protein A. M-phosphorylase mRNA amounts were determined by an analysis involving transfer of RNA from agarose gels to nitrocellulose filters and subsequent hybridization with radioactively labelled rat M-phosphorylase cDNA. These studies indicate that M-phosphorylase is present in all tissues tested with the possible exception of liver. These are skeletal muscle, heart, brain, stomach, lung, kidney, spleen and testis. Quantitation of M-phosphorylase amounts indicate that there is a wide spectrum of variation (over 1000-fold range) in the relative amounts of the M-isozymes in these tissues. Relative mRNA levels parallel isozyme levels indicating that the major control of expression of this isozyme is governed by mRNA accumulation.  相似文献   

13.
14.
Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehyde-fixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.  相似文献   

15.
Summary Immunofluorescence double-labelling and immunoenzyme double-staining methods were used to examine the location of glycogen phosphorylase brain isozyme with the astrocyte markers glial fibrillary acidic protein (GFAP) and S-100 protein in formaldehydefixed, paraffin-embedded slices from adult rat brain. Astrocytes in the cerebellum and the hippocampus, which express GFAP or S-100 protein immunoreactivity, show glycogen phosphorylase immunoreactivity. Regional intensity and intracellular distribution of the three antigens vary characteristically. In ependymal cells, glycogen phosphorylase immunoreactivity is co-localized with S-100 protein immunoreactivity, but not with GFAP immunoreactivity. These findings confirm that glycogen phosphorylase in the rat brain is exclusively localized in astrocytes and ependymal cells. All astrocytes, as far as they express GFAP or S-100 protein, do contain glycogen phosphorylase.  相似文献   

16.
Two distinct phosphorylase isozymes, skeletal muscle phosphorylase b and liver phosphorylase b, have been purified from skate (Raja pulchra) in a homogeneous form as judged by electrophoretic and immunological criteria. Both isozymes were dependent on AMP for activity and converted to a forms by rabbit muscle phosphorylase kinase. Their subunit molecular weight determined by sodium dodecyl sulfate-gel electrophoresis was 94,000. These isozymes were distinctly different in affinities for glycogen and AMP, while they were very similar in sensitivities to SO42?. Rabbit antibodies against each of the muscle and liver isozymes inhibited completely the respective specific antigens. No cross-reaction was observed in double diffusion tests, but some immunological relatedness of these isozymes was demonstrated by inhibition tests with antibodies. Their similarity was also shown by amino acid analyses. No evidence has been obtained that the skate possesses such an isozyme as mammalian phosphorylase L, the b form of which is inactive even in the presence of AMP. Electrophoretic studies on phosphorylases of crucian carp, toad, and snake revealed that these animals possess three isozymes which strikingly resemble mammalian isozymes in the organ-specific distribution and electrophoretic behavior.  相似文献   

17.
18.
The Novikoff hepatoma glycogen phosphorylase b has been purified over 300-fold, free of glycogen synthetase, some of its properties have been studied, and its relationship to fetal forms of rat muscle and liver phosphorylase has been established immunochemically. Its molecular weight is approximately 200,000, and, like the liver but unlike the muscle isozyme, it does not dimerize on conversion to the a form. However, it differs from the liver isozyme in being activated by AMP (Ka = 0.2 mM) and in not being activated by sulfate ion. Antibody to the adult rat muscle phosphorylase did not inhibit the activity of the tumor or liver isozyme. Although antibody to liver or hepatoma phosphorylase had no effect on adult muscle phosphorylase, each of these antibodies partially inhibited the other enzyme. These findings indicate the presence of some liver isozyme in the tumor, and this was confirmed by isoelectric focusing. Rat liver and muscle phosphorylase (and synthetase) were low during embryonal development but rose rapidly at or shortly after birth. Immunochemical studies revealed that both fetal liver and fetal muscle phosphorylases are immunologically identifiable with the tumor enzyme; and the fetal form is also present as a major form in rat kidney and brain.  相似文献   

19.
A technique is described for the quantitative measurement of creatine phosphokinase (CPK) isozymes in extracts of chick muscle. The isozymes are fractionated by stepwise elution with increasing salt concentrations from DEAE-Sephadex minicolumns. Isozyme separation was confirmed by polyacrylamide gel electrophoresis followed by enzyme staining. We used this method to determine changes in CPK isozymes during the course of myogenesis in culture. The total specific activity of CPK increases about 20-fold during myogenesis. Quantative analysis of isozyme changes shows that the muscle-specific form (MM) accounts for virtually all of this increase. Activity of MM-CPK is undetectable in 1-day cultures, increases rapidly after myoblast fusion, and comprises more than 70% of total CPK in mature cultures. In contrast, the specific activity of the brain-specific isozyme (BB) remains constant throughout myogenesis. This was interpreted as indicating that the B subunit is expressed in both mononucleated cells and myotubes. We confirmed this by analyzing CPK isozymes in fibroblast cultures and in myotube-enriched cultures. Elimination of most of the mononucleated cells in the cultures produced an increase in the specific activity of CPK, but had no effect on the isozyme pattern and did not decrease the relative amount of the BB isozyme. Pure fibroblast cultures contained very low CPK activity, predominantly the BB isozyme.  相似文献   

20.
Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号