首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 744 毫秒
1.
We combined culture-derived isotope tags (CDITs) with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) to extensively survey abnormal protein expression associated with hepatocellular carcinoma (HCC) in clinical tissues. This approach yielded an in-depth quantitated proteome of 1360 proteins. Importantly, 267 proteins were significantly regulated with a fold-change of at least 1.5. The proteins up-regulated in HCC tissues are involved in regulatory processes, such as the granzyme A-mediated apoptosis pathway (The GzmA pathway). The SET complex, a central component in the GzmA pathway, was significantly up-regulated in HCC tissue. The elevated expressions of all of the SET complex components were validated by Western blotting. Among them, ANP32A and APEX1 were further investigated by immunohistochemistry staining using tissue microarrays (59 cases), confirming their overexpression in tumors. The up-regulation and nuclear accumulations of APEX1 was associated not only with HCC malignancy but also with HCC differentiation in 96 clinical HCC cases. Our work provided a systematic and quantitative analysis and demonstrated key changes in clinical HCC tissues. These proteomic signatures could help to unveil the underlying mechanisms of hepatocarcinogenesis and may be useful for the discovery of candidate biomarkers.  相似文献   

2.
To explore the proteomic changes of placental trophoblastic cells in preeclampsia–eclampsia (PE), placental trophoblastic cells from normally pregnant women and women with hypertension during gestational period were prepared by laser capture microdissection (LCM), and proteins isolated from these cells were subjected to labeling and proteolysis with isotope-coded affinity tag reagent. A qualitative and quantitative analysis of the proteome expression of placental trophoblastic cells was made using two-dimensional liquid chromatography tandem mass spectrometry (2D LC–MS/MS). A total of 831 proteins in placental trophoblastic cells were identified by combined use of LCM technique and 2D LC–MS/MS. The result was superior to that of conventional two-dimensional electrophoresis method. There were marked differences in 169 proteins of placental trophoblastic cells between normally pregnant women and women with PE. Of 70 (41.4 %) proteins with more than twofold differences, 31 proteins were down-regulated, and 39 were up-regulated in placental trophoblastic cells of the woman with PE. Laminin expression in placenta trophoblastic cells of women with PE was significantly down-regulated as confirmed by Western blot analysis. These findings provide insights into the proteomic changes in placental trophoblastic cells in response to PE and may identify novel protein targets associated with the pathogenesis of PE.  相似文献   

3.
Global mass spectrometry (MS) profiling and spectral count quantitation are used to identify unique or differentially expressed proteins and can help identify potential biomarkers. MS has rarely been conducted in retrospective studies, because historically, available samples for protein analyses were limited to formalin-fixed, paraffin-embedded (FFPE) archived tissue specimens. Reliable methods for obtaining proteomic profiles from FFPE samples are needed. Proteomic analysis of these samples has been confounded by formalin-induced protein cross-linking. The performance of extracted proteins in a liquid chromatography tandem MS format from FFPE samples and extracts from whole and laser capture microdissected (LCM) FFPE and frozen/optimal cutting temperature (OCT)–embedded matched control rat liver samples were compared. Extracts from FFPE and frozen/OCT–embedded livers from atorvastatin-treated rats were further compared to assess the performance of FFPE samples in identifying atorvastatin-regulated proteins. Comparable molecular mass representation was found in extracts from FFPE and OCT-frozen tissue sections, whereas protein yields were slightly less for the FFPE sample. The numbers of shared proteins identified indicated that robust proteomic representation from FFPE tissue and LCM did not negatively affect the number of identified proteins from either OCT-frozen or FFPE samples. Subcellular representation in FFPE samples was similar to OCT-frozen, with predominantly cytoplasmic proteins identified. Biologically relevant protein changes were detected in atorvastatin-treated FFPE liver samples, and selected atorvastatin-related proteins identified by MS were confirmed by Western blot analysis. These findings demonstrate that formalin fixation, paraffin processing, and LCM do not negatively impact protein quality and quantity as determined by MS and that FFPE samples are amenable to global proteomic analysis. (J Histochem Cytochem 57:849–860, 2009)  相似文献   

4.
Quantitative proteomic profiling of pancreatic cancer juice   总被引:3,自引:0,他引:3  
Pancreatic juice is an exceptionally rich source of cancer-specific proteins shed from cancerous ductal cells into the pancreatic juice. Quantitative proteomic analysis of the proteins specific to pancreatic cancer juice has not previously been reported. We used isotope-code affinity tag (ICAT) technology and MS/MS to perform quantitative protein profiling of pancreatic juice from pancreatic cancer patients and normal controls. ICAT technology coupled with MS/MS allows the systematic study of the proteome and measures the protein abundance in pancreatic juice with the potential for development of biomarkers. A total of 105 proteins were identified and quantified in the pancreatic juice from a pancreatic cancer patient, of which 30 proteins showed abundance changes of at least twofold in pancreatic cancer juice compared to normal controls. Many of these proteins have been externally validated. This is the first comprehensive study of the pancreatic juice proteome by quantitative global protein profiling, and the study reveals numerous proteins that are shown for the first time to be associated with pancreatic cancer, providing candidates for diagnostic biomarkers. One of the identified proteins, insulin-like growth factor binding protein-2 was further validated by Western blotting to be elevated in pancreatic cancer juice and overexpressed in pancreatic cancer tissue.  相似文献   

5.
Classical proteomics combined two-dimensional gel electrophoresis (2-DE) for the separation and quantification of proteins in a complex mixture with mass spectrometric identification of selected proteins. More recently, the combination of liquid chromatography (LC), stable isotope tagging, and tandem mass spectrometry (MS/MS) has emerged as an alternative quantitative proteomics technology. We have analyzed the proteome of Mycobacterium tuberculosis, a major human pathogen comprising about 4,000 genes, by (i) 2-DE and mass spectrometry (MS) and by (ii) the isotope-coded affinity tag (ICAT) reagent method and MS/MS. The data obtained by either technology were compared with respect to their selectivity for certain protein types and classes and with respect to the accuracy of quantification. Initial datasets of 60,000 peptide MS/MS spectra and 1,800 spots for the ICAT-LC/MS and 2-DE/MS methods, respectively, were reduced to 280 and 108 conclusively identified and quantified proteins, respectively. ICAT-LC/MS showed a clear bias for high M(r) proteins and was complemented by the 2-DE/MS method, which showed a preference for low M(r) proteins and also identified cysteine-free proteins that were transparent to the ICAT-LC/MS method. Relative quantification between two strains of the M. tuberculosis complex also revealed that the two technologies provide complementary quantitative information; whereas the ICAT-LC/MS method quantifies the sum of the protein species of one gene product, the 2-DE/MS method quantifies at the level of resolved protein species, including post-translationally modified and processed polypeptides. Our data indicate that different proteomic technologies applied to the same sample provide complementary types of information that contribute to a more complete understanding of the biological system studied.  相似文献   

6.
By coupling two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) with amino acid-coded mass tagging (AACT), we have greatly increased the analytical throughput and sequence coverage of MS-based methods for proteome-wide quantitation. The dynamic range and reproducibility of this 2D-LC-AACT quantitative approach were evaluated by profiling the mixtures with different ratios of E. coli cells grown in either regular or AACT medium. A SQL-based high thoughput MASCOT data analysis tool was developed for proteomic data sorting and mining. We investigated the early stage of apoptosis by inducing the p53 upregulated modulator of apoptosis (PUMA) through the analyses of the relative ratios of the pairwise isotope signals that were originated from the control and labeled PUMA-induced cells. In 20-hour 2D-LC-MS/MS run, 480 proteins were conclusively identified, and more than half of them were quantified. A noteworthy change in the quantitative profile was that histones and a ubiquitin conjugate protein UBC9, which are involved in DNA double-strand break (DSB) repair were significantly down-regulated in the PUMA-overexpressing apoptotic cells, suggesting the detection of DSB in the apoptotic process. The quantitative profiling efficiency of this approach was compared with the gel-based quantitative analysis scheme.  相似文献   

7.
Ai J  Tan Y  Ying W  Hong Y  Liu S  Wu M  Qian X  Wang H 《Proteomics》2006,6(2):538-546
Hepatocellular carcinoma (HCC) is one of the most frequent visceral neoplasia worldwide and is a multifactorial and multistage pathogenesis that finally leads to the deregulation of cell homeostasis. Laser capture microdissection (LCM) may allow a more ready identification of differences in protein expression in selected cell types or areas of tissue, and microscopic regions as small as 3-5 microm in diameter can be sampled. Here we applied the LCM to the proteomic study of hepatitis B-related HCC and surrounding non-tumor tissues. Proteome alterations were observed using 2-DE and ESI-MS/MS, and alterations in the proteome were examined. Twenty protein spots were selected, of which 11 proteins were significantly altered in the HCC compared with the surrounding non-tumor tissues. Of the proteins that were selected, peroxiredoxin 2, apolipoprotein A-I precursor, 3-hydroxyacyl-CoA dehydrogenase type II, and 14.5-kDa translational inhibitor protein appear to be novel candidates as useful hepatitis B-related HCC markers. This study indicates that LCM is a useful technological method in the proteomic study of cancer tissue. The proteins revealed in this experiment can be used in the future for studies pertaining to hepatocarcinogenesis, or as diagnostic markers and therapeutic targets for HCC associated with hepatitis B virus infection.  相似文献   

8.
The blood-brain barrier (BBB) is formed by endothelial cells of cerebral microvessels sealed by tight junctions. Ischemic brain injury is known to initiate a series of biochemical and molecular processes that lead to the disruption of the BBB, development of vascular inflammation, and subsequent neurovascular remodeling including angiogenesis. Molecular effectors of these changes are multiple and are regulated in a dynamic fashion. The current study was designed to analyze changes in cellular and secreted proteins in rat brain endothelial cells (BEC) exposed to ischemic insult in vitro using two complementary quantitative proteomic approaches: two-dimensional gel electrophoresis (2DE) and isotope-coded affinity tag (ICAT)-based proteomics. We show a comprehensive qualitative and quantitative comparison between the two proteomic methods applied to the same experimental system with respect to their reproducibility, specificity, and the type of proteins identified. In total, >160 proteins showed differential expression in response to the ischemic insult, with 38 identified by 2DE and 138 by ICAT. Only 15 proteins were commonly identified. ICAT showed superior reproducibility over 2DE and was more suitable for detecting small, large, basic, hydrophobic, and secreted proteins than 2DE. However, positive identification of proteins by MS/MS was more reliably done using a 2DE-based method compared to ICAT. Changes in proteins involved in nucleic acid, protein, and carbohydrate metabolism, signal transduction, cell structure, adhesion and motility, immunity and defense, cell cycle, and apoptosis were observed. The functional significance of observed protein changes was evaluated through a multifaceted protein classification and validation process, which included literature mining and comparative evaluation of protein changes in analogous in vitro and in vivo ischemia models. The comparative analyses of protein changes between the in vitro and in vivo models demonstrated a significant correlative relationship, emphasizing the 'translational' value of in vitro endothelial models in neurovascular research.  相似文献   

9.
Synaptosomes are isolated synapses produced by subcellular fractionation of brain tissue. They contain the complete presynaptic terminal, including mitochondria and synaptic vesicles, and portions of the postsynaptic side, including the postsynaptic membrane and the postsynaptic density (PSyD). A proteomic characterisation of synaptosomes isolated from mouse brain was performed employing the isotope-coded affinity tag (ICAT) method and tandem mass spectrometry (MS/MS). After isotopic labelling and tryptic digestion, peptides were fractionated by cation exchange chromatography and cysteine-containing peptides were isolated by affinity chromatography. The peptides were identified by microcapillary liquid chromatography-electrospray ionisation MS/MS (muLC-ESI MS/MS). In two experiments, peptides representing a total of 1131 database entries were identified. They are involved in different presynaptic and postsynaptic functions, including synaptic vesicle exocytosis for neurotransmitter release, vesicle endocytosis for synaptic vesicle recycling, as well as postsynaptic receptors and proteins constituting the PSyD. Moreover, a large number of soluble and membrane-bound molecules serving functions in synaptic signal transduction and metabolism were detected. The results provide an inventory of the synaptic proteome and confirm the suitability of the ICAT method for the assessment of synaptic structure, function and plasticity.  相似文献   

10.
Mounting evidence is merging to affirm the effectiveness of bacterial lipopolysaccharides (LPS) as biological control agents, inducers of innate immunity, and to stimulate/potentiate the development of defense responses in plants through protein phosphorylation-mediated signal perception/transduction responses. In vivo labeling of protein phosphorylation events during signal transduction indicated the rapid phosphorylation of several proteins. Substantial differences and de novo LPS-induced phosphorylation were also observed with two-dimensional analysis. In this study, qualitative and quantitative changes in phosphoproteins of Nicotiana tabacum suspension cells during elicitation by LPS from the Gram-negative bacteria, Burkholderia cepacia, were analyzed using two-dimensional electrophoresis in combination with a phosphoprotein-specific gel stain. Trypsin digested phosphoproteins were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) and nano-electrospray-ionization liquid chromatography tandem mass spectrometry (nano-ESI-LC/MS/MS). A total of 27 phosphoproteins were identified from 23 excised gel spots. The identified phosphoproteins indicate that LPS(B.cep)-induced signal perception/transduction involves G-protein coupled receptor signaling, Ca(2+)/calmodulin-dependent signaling pathways, H(+)-ATPase regulation of intracellular pH, thioredoxin-mediated signaling and phosphorylation of 14-3-3 regulatory proteins. Other targets of LPS(B.cep)-responsive phosphorylation included NTP pool maintenance, heat shock proteins, protein biosynthesis and chaperones as well as cytoskeletal tubulin. The results add novel insights into the biochemical process of LPS perception and resulting signal transduction.  相似文献   

11.
Subcellular proteomics, as an important step to functional proteomics, has been a focus in proteomic research. However, the co-purification of "contaminating" proteins has been the major problem in all the subcellular proteomic research including all kinds of mitochondrial proteome research. It is often difficult to conclude whether these "contaminants" represent true endogenous partners or artificial associations induced by cell disruption or incomplete purification. To solve such a problem, we applied a high-throughput comparative proteome experimental strategy, ICAT approach performed with two-dimensional LC-MS/MS analysis, coupled with combinational usage of different bioinformatics tools, to study the proteome of rat liver mitochondria prepared with traditional centrifugation (CM) or further purified with a Nycodenz gradient (PM). A total of 169 proteins were identified and quantified convincingly in the ICAT analysis, in which 90 proteins have an ICAT ratio of PM:CM>1.0, while another 79 proteins have an ICAT ratio of PM:CM<1.0. Almost all the proteins annotated as mitochondrial according to Swiss-Prot annotation, bioinformatics prediction, and literature reports have a ratio of PM:CM>1.0, while proteins annotated as extracellular or secreted, cytoplasmic, endoplasmic reticulum, ribosomal, and so on have a ratio of PM:CM<1.0. Catalase and AP endonuclease 1, which have been known as peroxisomal and nuclear, respectively, have shown a ratio of PM:CM>1.0, confirming the reports about their mitochondrial location. Moreover, the 125 proteins with subcellular location annotation have been used as a testing dataset to evaluate the efficiency for ascertaining mitochondrial proteins by ICAT analysis and the bioinformatics tools such as PSORT, TargetP, SubLoc, MitoProt, and Predotar. The results indicated that ICAT analysis coupled with combinational usage of different bioinformatics tools could effectively ascertain mitochondrial proteins and distinguish contaminant proteins and even multilocation proteins. Using such a strategy, many novel proteins, known proteins without subcellular location annotation, and even known proteins that have been annotated as other locations have been strongly indicated for their mitochondrial location.  相似文献   

12.
Quantitative protein profiling is an essential part of proteomics and requires technologies that accurately, reproducibly, and comprehensively identify and quantify proteins. Over the past years, many quantitative proteomic methods have been developed. Here, 20S proteasome subtypes isolated from rat were compared by four approaches based on the combination of isotope-coded affinity tag (ICAT), 2-DE, LC and ESI and MALDI MS: (i) 2-DE, (ii) ICAT/2-DE MALDI-MS, (iii) ICAT/LC-ESI-MS, (iv) ICAT/LC-MALDI-MS. A definite qualitative advantage of 2-DE gels was the separation of all known protein species, the identification of cysteine sulfoxide of alpha-4 (RC6-IS) and N-terminal acetylation of several subunits. Furthermore, quantitative differences between the standard subunits beta-2, and beta-5 and their immunosubunits were only detected by 2-DE image analysis revealing a higher replacement of standard- by immuno-beta-subunits in subtype IV. It was obvious that for relative quantification only protein spot and mass peaks with a certain level of intensity displayed acceptable values of SD. However, ICAT in conjunction with LC/MALDI-MS was the most accurate method for quantification. The experimental data of this investigation are accessible via http://www.mpiib-berlin.mpg.de/2D-PAGE/.  相似文献   

13.
We present the first proteomic analysis on the cellular response to severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection. The differential proteomes of Vero E6 cells with and without infection of the SARS-CoV were resolved and quantitated with two-dimensional differential gel electrophoresis followed by ESI-MS/MS identification. Moreover isotope-coded affinity tag technology coupled with two-dimensional LC-MS/MS were also applied to the differential proteins of infected cells. By combining these two complementary strategies, 355 unique proteins were identified and quantitated with 186 of them differentially expressed (at least 1.5-fold quantitative alteration) between infected and uninfected Vero E6 cells. The implication for cellular responses to virus infection was analyzed in depth according to the proteomic results. Thus, the present work provides large scale protein-related information to investigate the mechanism of SARS-CoV infection and pathogenesis.  相似文献   

14.
Two-dimensional gel electrophoresis; better than a poke in the ICAT?   总被引:5,自引:0,他引:5  
To date, the most widely used technology for conducting proteomic studies has been two-dimensional gel electrophoresis (2DGE), but this approach does have drawbacks. Isotope-coded affinity tagging (ICAT) is starting to challenge 2DGE as a new proteomic tool for the analysis of proteins in complex biological specimens. An appraisal of these two methodologies reveals that neither ICAT nor 2DGE provide comprehensive coverage on a proteome-wide scale.  相似文献   

15.
Serum low-molecular-weight proteins (LMWPs, molecular weight <30 kDa) are closely related to the body physiological and pathological situations, whereas many difficulties are encountered when enriching and fractionating them. Using C18 absorbent (100 Å) enrichment and fractionation under urea/dithiothreitol (DTT) denatured environment followed by 60% acetonitrile (ACN) elution, serum LMWPs could be enriched more than 100-fold and were evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional gel electrophoresis (2-DE), and isotope-coded affinity tag (ICAT) labeling quantification. Proteins existing in human serum at low nanograms/milliliter (ng/ml) levels, such as myeloid-related proteins (MRPs), could be identified directly from 2-DE coupled with matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF/TOF MS) and LTQ-Orbitrap MS. Sixteen proteins were confidentially identified and quantified using ICAT labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). By virtue of its easy operation and high reproducibility to process large quantity complex serum samples, this method has potential uses in enriching LMWPs either in serum or in cell and tissue samples.  相似文献   

16.
Due to the complexity of proteomes, developing methods of sample fractionation, separation, concentration, and detection have become urgent to the identification of large numbers of proteins, as well as the acquisition of those proteins in low abundance. In this work, liquid isoelectric focusing (LIEF) combined with 2D-LC-MS/MS was applied to the proteome of Saccharomyces cerevisiae. This yielded a total of 1795 proteins that were detected and identified by 30 fractions of protein prefractionation. Categorization of these hits demonstrated the ability of this technology to detect and identify proteins rarely seen in proteome analysis without protein fractionation. LIEF-2D-LC-MS/MS also produced improved resolution of low-abundance proteins. Furthermore, we analyzed the characteristics of proteins obtained by LIEF-2D-LC-MS/MS. 1103 proteins with CAI under 0.2 were identified, allowing us to specifically obtain detailed biochemical information on these kind proteins. It was observed that LIEF-2D-LC-MS/MS is useful for large-scale proteome analysis and may be specifically applied to systems with wide dynamic ranges.  相似文献   

17.
Laser‐capture microdissection (LCM) offers a reliable cell population enrichment tool and has been successfully coupled to MS analysis. Despite this, most proteomic studies employ whole tissue lysate (WTL) analysis in the discovery of disease biomarkers and in profiling analyses. Furthermore, the influence of tissue heterogeneity in WTL analysis, nor its impact in biomarker discovery studies have been completely elucidated. In order to address this, we compared previously obtained high resolution MS data from a cohort of 38 breast cancer tissues, of which both LCM enriched tumor epithelial cells and WTL samples were analyzed. Label‐free quantification (LFQ) analysis through MaxQuant software showed a significantly higher number of identified and quantified proteins in LCM enriched samples (3404) compared to WTLs (2837). Furthermore, WTL samples displayed a higher amount of missing data compared to LCM both at peptide and protein levels (p‐value < 0.001). 2D analysis on co‐expressed proteins revealed discrepant expression of immune system and lipid metabolisms related proteins between LCM and WTL samples. We hereby show that LCM better dissected the biology of breast tumor epithelial cells, possibly due to lower interference from surrounding tissues and highly abundant proteins. All data have been deposited in the ProteomeXchange with the dataset identifier PXD002381 ( http://proteomecentral.proteomexchange.org/dataset/PXD002381 ).  相似文献   

18.
The options available for processing quantitative data from isotope coded affinity tag (ICAT) experiments have mostly been confined to software specific to the instrument of acquisition. However, recent developments with data format conversion have subsequently increased such processing opportunities. In the present study, data sets from ICAT experiments, analysed with liquid chromatography/tandem mass spectrometry (MS/MS), using an Applied Biosystems QSTAR Pulsar quadrupole-TOF mass spectrometer, were processed in triplicate using separate mass spectrometry software packages. The programs Pro ICAT, Spectrum Mill and SEQUEST with XPRESS were employed. Attention was paid towards the extent of common identification and agreement of quantitative results, with additional interest in the flexibility and productivity of these programs. The comparisons were made with data from the analysis of a specifically prepared test mixture, nine proteins at a range of relative concentration ratios from 0.1 to 10 (light to heavy labelled forms), as a known control, and data selected from an ICAT study involving the measurement of cytokine induced protein expression in human lymphoblasts, as an applied example. Dissimilarities were detected in peptide identification that reflected how the associated scoring parameters favoured information from the MS/MS data sets. Accordingly, there were differences in the numbers of peptides and protein identifications, although from these it was apparent that both confirmatory and complementary information was present. In the quantitative results from the three programs, no statistically significant differences were observed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号