首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple signal transduction pathways, including the Raf/MEK/ERK and PI3K/Akt kinase cascades, play critical roles in transducing growth signals from activated cell surface receptors. Using conditionally and constitutively-active forms of MEK1 and either PI3K or Akt, we demonstrate synergy between these kinases in relieving cytokine-dependence of the FDC-P1 hematopoietic cell line. Cytokine-independent cells were obtained from ?MEK1:ER-infected cells at a frequency of 5 x 10-5 indicating that low frequency of cells expressing ?-estradiol-regulated ?MEK1:ER became factor-independent, while activated PI3K or Akt by themselves did not relieve cytokine-dependence. In contrast, cytokine-independent cells were recovered approximately 25 to 250-fold more frequently from ?MEK1:ER infected cells also infected with either activated PI3K or Akt. MEK/PI3K and MEK/Akt-responsive cells could be maintained long-term as long as either ?-estradiol or the estrogen receptor antagonist 4-hydroxy-tamoxifen (4HT) were provided. The MEK/PI3K/Akt responsive cells were sensitive to both MEK and PI3K/Akt/p70S6K inhibitors. Synergy was observed when inhibitors which targeted both pathways were added together. These results indicate that there is synergy between the Raf/MEK/ERK and PI3K/Akt pathways in terms of abrogation of cytokine-dependence of hematopoietic cells. Likewise, suppression of multiple signal transduction pathways is a more effective means to inhibit cell cycle progression and induce apoptosis in leukemic cells.  相似文献   

2.
Multiple signal transduction pathways, including the Raf/MEK/ERK and PI3K/Akt kinase cascades, play critical roles in transducing growth signals from activated cell surface receptors. Using conditionally and constitutively-active forms of MEK1 and either PI3K or Akt, we demonstrate synergy between these kinases in relieving cytokine-dependence of the FDC-P1 hematopoietic cell line. Cytokine-independent cells were obtained from DeltaMEK1:ER-infected cells at a frequency of 5 x 10(-5) indicating that low frequency of cells expressing beta-estradiol-regulated DeltaMEK1:ER became factor-independent, while activated PI3K or Akt by themselves did not relieve cytokine-dependence. In contrast, cytokine-independent cells were recovered approximately 25 to 250-fold more frequently from DeltaMEK1:ER infected cells also infected with either activated PI3K or Akt. MEK/PI3K and MEK/Akt-responsive cells could be maintained long-term as long as either beta-estradiol or the estrogen receptor antagonist 4-hydroxy-tamoxifen (4HT) were provided. The MEK/PI3K/Akt responsive cells were sensitive to both MEK and PI3K/Akt/p70S6K inhibitors. Synergy was observed when inhibitors which targeted both pathways were added together. These results indicate that there is synergy between the Raf/MEK/ERK and PI3K/Akt pathways in terms of abrogation of cytokine-dependence of hematopoietic cells. Likewise, suppression of multiple signal transduction pathways is a more effective means to inhibit cell cycle progression and induce apoptosis in leukemic cells.  相似文献   

3.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on cell cycle progression, gene expression, prevention of apoptosis and sensitivity to chemotherapeutic drugs were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf-1 and Akt-1 activation by treatment with testosterone or tamoxifen respectively. In these cells we can compare the effects of normal cytokine vs. oncogene mediated signaling in the same cells by changing the culture conditions. Raf-1 was more effective than Akt-1 in inducing cell cycle progression and preventing apoptosis in the presence and absence of chemotherapeutic drugs. The normal cytokine for these cells, interleukin-3 induced/activated most downstream genes transiently, with the exception of p70S6K that was induced for prolonged periods of time. In contrast, most of the downstream genes induced by either the activate Raf-1 or Akt-1 oncogenes were induced for prolonged periods of time, documenting the differences between cytokine and oncogene mediated gene induction which has important therapeutic consequences. The FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells were sensitive to MEK and PI3K/mTOR inhibitors. Combining MEK and PI3K/mTOR inhibitors increased the induction of apoptosis. The effects of doxorubicin on the induction of apoptosis could be enhanced with MEK, PI3K and mTOR inhibitors. Targeting the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be an effective approach for therapeutic intervention in those cancers which have upstream mutations which result in activation of these pathways.  相似文献   

4.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on cell cycle progression, gene expression, prevention of apoptosis and sensitivity to chemotherapeutic drugs were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf-1 and Akt-1 activation by treatment with testosterone or tamoxifen respectively. In these cells we can compare the effects of normal cytokine vs. oncogene mediated signaling in the same cells by changing the culture conditions. Raf-1 was more effective than Akt-1 in inducing cell cycle progression and preventing apoptosis in the presence and absence of chemotherapeutic drugs. The normal cytokine for these cells, interleukin-3 induced/activated most downstream genes transiently, with the exception of p70S6K that was induced for prolonged periods of time. In contrast, most of the downstream genes induced by either the activate Raf-1 or Akt-1 oncogenes were induced for prolonged periods of time, documenting the differences between cytokine and oncogene mediated gene induction which has important therapeutic consequences. The FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells were sensitive to MEK and PI3K/mTOR inhibitors. Combining MEK and PI3K/mTOR inhibitors increased the induction of apoptosis. The effects of doxorubicin on the induction of apoptosis could be enhanced with MEK, PI3K and mTOR inhibitors. Targeting the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be an effective approach for therapeutic intervention in those cancers which have upstream mutations which result in activation of these pathways.  相似文献   

5.
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip−1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip−1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.  相似文献   

6.
The effects of inhibition of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways and chemotherapeutic drugs on cell cycle progression and drug sensitivity were examined in cytokine-dependent FL5.12 hematopoietic cells. We examined their effects, as these cells resemble normal hematopoietic precursor cells as they do not exhibit “oncogene-addicted” growth, while they do display “cytokine-addicted” proliferation as cytokine removal resulted in apoptosis in greater than 80% of the cells within 48 h. When cytokine-dependent FL5.12 cells were cultured in the presence of IL-3, which stimulated multiple proliferation and anti-apoptotic cascades, MEK, PI3K and mTOR inhibitors transiently suppressed but did not totally inhibit cell cycle progression or induce apoptosis while chemotherapeutic drugs such as doxorubicin and paclitaxel were more effective in inducing cell cycle arrest and apoptosis. Doxorubicin induced a G1 block, while paclitaxel triggered a G2/M block. Doxorubicin was more effective in inducing cell death than paclitaxel. Furthermore the effects of doxorubicin could be enhanced by addition of MEK, PI3K or mTOR inhibitors. Cytokine-dependent cells which proliferate in vitro and are not “oncogene-addicted” may represent a pre-malignant stage, more refractory to treatment with targeted therapy. However, these cells are sensitive to chemotherapeutic drugs. It is important to develop methods to inhibit the growth of such cytokine-dependent cells as they may resemble the leukemia stem cell and other cancer initiating cells. These results demonstrate the enhanced effectiveness of targeting early hematopoietic progenitor cells with combinations of chemotherapeutic drugs and signal transduction inhibitors.  相似文献   

7.
The effects of inhibition of the Raf/MEK/ERK and PI3K/Akt/mTOR signaling pathways and chemotherapeutic drugs on cell cycle progression and drug sensitivity were examined in cytokine-dependent FL5.12 hematopoietic cells. We examined their effects, as these cells resemble normal hematopoietic precursor cells as they do not exhibit “oncogene-addicted” growth, while they do display “cytokine-addicted” proliferation as cytokine removal resulted in apoptosis in greater than 80% of the cells within 48 h. When cytokine-dependent FL5.12 cells were cultured in the presence of IL-3, which stimulated multiple proliferation and anti-apoptotic cascades, MEK, PI3K and mTOR inhibitors transiently suppressed but did not totally inhibit cell cycle progression or induce apoptosis while chemotherapeutic drugs such as doxorubicin and paclitaxel were more effective in inducing cell cycle arrest and apoptosis. Doxorubicin induced a G1 block, while paclitaxel triggered a G2/M block. Doxorubicin was more effective in inducing cell death than paclitaxel. Furthermore the effects of doxorubicin could be enhanced by addition of MEK, PI3K or mTOR inhibitors. Cytokine-dependent cells which proliferate in vitro and are not “oncogene-addicted” may represent a pre-malignant stage, more refractory to treatment with targeted therapy. However, these cells are sensitive to chemotherapeutic drugs. It is important to develop methods to inhibit the growth of such cytokine-dependent cells as they may resemble the leukemia stem cell and other cancer initiating cells. These results demonstrate the enhanced effectiveness of targeting early hematopoietic progenitor cells with combinations of chemotherapeutic drugs and signal transduction inhibitors.  相似文献   

8.
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to chemotherapeutic drugs and increased expression of Raf/MEK/ERK pathway. Thus in advanced prostate cancer, it may be advantageous to induce Raf/MEK/ERK expression to promote cell cycle arrest, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK induced proliferation and drug resistance. Thus the Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors.  相似文献   

9.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells, increased the IC50 for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long-term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.  相似文献   

10.
The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/ΔAkt-1:ER*(Myr+) + ΔRaf-1:AR cells, increased the IC50 for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC50. However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long-term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades.  相似文献   

11.
Interleukin-2 (IL-2) is the major growth factor of activated T lymphocytes. By inducing cell cycle progression and protection from apoptosis in these cells, IL-2 is involved in the successful execution of an immune response. Upon binding its receptor, IL-2 activates a variety of signal transduction pathways, including the Ras/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and Janus kinase (JAK)/STAT cascades. In addition, activation of phosphatidylinositol 3-kinase (PI3K) and several of its downstream targets has also been shown. However, the coupling of STAT3 serine phosphorylation to PI3K in response to IL-2 has yet to be shown in either T cell lines or primary human T cells. This report shows that the PI3K inhibitors LY294002 and wortmannin block activation of MEK and ERK by IL-2 in primary human T cells. Moreover, these inhibitors significantly reduce IL-2-triggered STAT3 serine phosphorylation without affecting STAT5 serine phosphorylation. Analysis of the effects of these inhibitors on cell cycle progression and apoptosis strongly suggests that PI3K-mediated events, which includes STAT3 activation, are involved in IL-2-mediated cell proliferation but not cell survival. Finally, results presented illustrate that in primary human T cells, activation of Akt is insufficient for IL-2-induced anti-apoptosis. Thus, these results demonstrate that IL-2 stimulates PI3K-dependent events that correlate with cell cycle progression, but not anti-apoptosis, in activated primary human T cells.  相似文献   

12.
Ovarian follicle development is dependent on growth factors that stimulate cell proliferation and act as survival factors to prevent apoptosis of follicle cells. We examined the mechanism of the protective effect of IGF-I against Fas ligand-induced apoptosis of granulosa cells and its relationship to cell proliferation. IGF-I activated both the phosphoinositide 3'-OH kinase (PI3K) and the MAPK pathways. Experiments using specific inhibitors of these pathways showed that protection by IGF-I was mediated by the PI3K pathway and not the MAPK pathway. Recombinant adenoviruses were used to test whether the downstream target of PI3K activation, Akt kinase, was required for protection against apoptosis. Expression of dominant negative Akt prevented protection by IGF-I whereas expression of constitutively active Akt (myrAkt) mimicked the effect of IGF-I. Treatment with IGF-I, or expression of myrAkt, increased progression from G(0)/G(1) to S phase of the cell cycle whereas expression of dominant negative Akt inhibited G(0)/G(1) to S phase progression and prevented the stimulatory effect of IGF-I. We tested whether cell cycle progression was required for protection from apoptosis using the cyclin-dependent kinase-2 inhibitor roscovitine, which blocks cells at the G(1)/S transition. Roscovitine prevented the protective effect of IGF-I and myrAkt expression against apoptosis. Therefore, activation of Akt is not sufficient to protect granulosa cells from apoptosis in the absence of cell cycle progression. In summary, IGF-I protects granulosa cells from apoptosis by activation of the PI3K/Akt pathway. This protective effect can occur only when progression from G(1) to S phase of the cell cycle regulated by the PI3K/Akt pathway is unperturbed.  相似文献   

13.
14.
FDC-P1 hematopoietic cells were conditionally transformed to grow in response to ΔB-Raf:ER, ΔRaf-1:ER or ΔA-Raf:ER in which the hormone binding domain of the estrogen receptor (ER) was linked to the N-terminal truncated (Δ) Raf genes. When these cells were deprived of IL-3 or β-estradiol for 24 hrs, they exited the cell cycle and underwent apoptosis. FD/ΔRaf-1:ER and FD/ΔA-Raf:ER, but not FD/ΔB-Raf:ER cells, were readily induced to re-enter the cell cycle after addition of β-estradiol or IL-3. Deprived FD/ΔRaf-1:ER, but not FD/ΔB-Raf:ER cells, expressed activated forms of MEK1 and ERK after β-estradiol or IL-3 stimulation. Insulin or β-estradiol alone did not induce FD/ΔB-Raf:ER cells to re-enter the cell cycle, whereas cell cycle entry was observed upon their co-addition. Apoptosis was prevented in FD/ΔB-Raf:ER cells when they were cultured in the presence of IL-3 or β-estradiol, whereas they underwent apoptosis in their absence. Insulin by itself did not prevent apoptosis, however, upon ΔB-Raf:ER or ΔRaf-1:ER activation and addition of insulin, more than an additive effect was observed in both lines indicating that these pathways synergized to prevent apoptosis. Raf isoforms differ in their abilities to control apoptosis and cell cycle progression and B-Raf requires insulin-activated pathways for full antiapoptotic and proliferative activity.  相似文献   

15.
Breast cancer is one of the most common cancers and affects nearly 1 in 7 women. We have demonstrated that targeting the CaM-K, Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be a novel approach to treat drug resistant breast cancer and eliminate cancer stem cells. Common chemotherapeutic drugs, such as doxorubicin, induce the CaM-K pathway which in turn, leads to activation of anti-apoptotic pathways such as Raf/MEK/ERK and PI3K/Akt. Some drug resistant breast cancers exhibited increased expression of CaM-KIV. CaM-K inhibitors synergized with doxorubicin to induce the death of all drug resistant breast cancers examined. Since CaM-Ks are known to result in activation of the Raf/MEK/ERK and PI3K/Akt pathways, we investigated the roles that these pathways exert in breast cancer drug resistance. CaM-K inhibitors suppressed ERK activation in response to doxorubicin in both drug sensitive and resistant cells. CaM-K inhibitors also suppressed ERK activation in response to FBS in the drug resistant cells suggesting dependence on the CaM-K pathway for proliferation. Both the Raf/MEK/ERK and PI3K/Akt pathways are involved in breast cancer drug resistance as they were detected at elevated, activated levels in the drug resistant cells and introduction of constitutively activated forms of Raf-1 and Akt-1 resulted in drug resistance. Drug resistant CICs were often hypersensitive to MEK and mTOR inhibitors, implicating important roles of these pathways in drug resistance. In summary, targeting these pathways may enhance therapy of drug resistant breast cancer and eliminate CICs.Breast cancer therapy is often limited by the occurrence of drug resistance which may be due to the re-emergence of CICs. The studies outlined in this proposal may identify a potentially novel role for CaM-Ks in drug resistance and metastasis and may lead to improved approaches to treat breast tumors by eliminating CICs. Our proposed studies are highly innovative as we will determine the involvement of the CaM-K pathway in breast cancer drug resistance, metastasis and CIC formation. Similar approaches have not been previously performed. Our studies may result in the discovery of novel methods to treat breast cancer by targeting the CaM-K pathway in combination with currently used and approved chemotherapeutic regimens to eliminate CICs which may be responsible for both drug resistance and metastasis.  相似文献   

16.
Cerebral ischemia increases neural progenitor cell proliferation and neurogenesis. However, the precise molecular mechanism is poorly understood. The present study was undertaken to determine roles of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt and their signaling pathways in neural progenitor cells exposed to hypoxia/reoxygenation (H/R), an in vitro model of ischemia/reperfusion. Neural progenitor cells were isolated from postnatal mouse brain. ERK and Akt were transiently activated during the early phase of reoxygenation following 4-h of hypoxia. The ERK activation was inhibited by U0126, a specific inhibitor of MEK, but not by LY294002, a specific inhibitor of PI3K, whereas the Akt activation was blocked by LY294002, but not by U0126. Reoxygenation following 4-h hypoxia stimulated cell proliferation, which was dependent on ERK and Akt activation. Inhibitors of growth factor receptor (AG1478) and Src (PP2) and the antioxidant N-acetylcysteine did not affect activation of ERK and Akt, while the Ras and Raf inhibitors inhibited activation of ERK, but not Akt. PKC inhibitors inhibited both ERK and Akt activation. Taken together, these results suggest that H/R induces activation of MEK/ERK and PI3K/Akt survival signaling pathways through a PKC-dependent mechanism. These pathways may be responsible for the repair process during ischemia/reperfusion.  相似文献   

17.
18.
PI3K/Akt and ERK pathways are important for growth and proliferation of many types of cancers. Therefore, PI3K inhibitor LY294002 (LY) and MEK1/2 inhibitor PD98059 (PD) are used to sensitize many types of cancer cell lines to chemotherapeutic agents, where AKT and ERK pathways are over activated. However, in this study, we show for the first time that PD could protect the leukemia cells independent of ERK pathway inhibition, besides, we also report a detailed mechanism for antiapoptotic effect of LY in HL-60 cells against the cytotoxicity induced by a boswellic acid analog BA145. Apoptosis induced by BA145 is accompanied by downregulation of PI3K/Akt and ERK pathways in human myelogenous leukemia HL-60 cells, having activating N-Ras mutation. Both LY and PD protected the cells against mitochondrial stress caused by BA145, and reduced the release of cytochrome c and consequent activation of caspase-9. LY and PD also diminished the activation of caspase-8 without affecting the death receptors. Besides, LY and PD also reversed the caspase dependent DNA damage induced by BA145. Further studies revealed that LY and PD significantly reversed the inhibitory effect of BA145 on cell cycle regulatory proteins by upregulating hyperphosphorylated retinoblastoma, pRB (S795) and downregulating p21 and cyclin E. More importantly, all these events were reversed by caspase inhibition by Z-VAD-fmk, suggesting that both LY and PD act at the level of caspases to diminish the apoptosis induced by BA145. These results indicate that inhibitors of PI3K/Akt and ERK pathways can play dual role and act against chemotherapeutic agents.  相似文献   

19.
Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/Akt) is thought to serve as an oncogenic signaling pathway which can be activated by Ras. The role of PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells is currently not clear. Here we demonstrate that inducible expression of oncogenic Ha-Ras results in activation of PKB/Akt in rat intestinal epithelial cells (RIE-iHa-Ras), which was blocked by treatment with inhibitors of PI3K activity. The PI3K inhibitor, LY-294002, partially reversed the morphological transformation induced by Ha-Ras and resulted in a modest stimulation of apoptosis. The most pronounced phenotypic alteration following inhibition of PI3K was induction of G(1) phase cell cycle arrest. LY-294002 blocked the Ha-Ras-induced expression of cyclin D1, cyclin-dependent kinase (CDK) 2, and increased the levels of p27(kip). Both LY-294002 and wortmannin significantly reduced anchorage-independent growth of RIE-iHa-Ras cells. Forced expression of both the constitutively active forms of Raf (DeltaRaf-22W or Raf BXB) and Akt (Akt-myr) resulted in transformation of RIE cells that was not achieved by transfection with either the Raf mutant construct or Akt-myr alone. These findings delineate an important role for PI3K/Akt in Ras-mediated transformation of intestinal epithelial cells.  相似文献   

20.
FDC-P1 hematopoietic cells were conditionally transformed to grow in response to (delta)B Raf:ER, (delta)Raf-1:ER or DA-Raf:ER in which the hormone binding domain of the estrogen receptor (ER) was linked to the N-terminal truncated (delta) Raf genes. When these cells were deprived of IL-3 or beta-estradiol for 24 hrs, they exited the cell cycle and underwent apoptosis. FD/(delta)Raf-1:ER and FD/(delta)A-Raf:ER, but not FD/(delta)B-Raf:ER cells, were readily induced to re-enter the cell cycle after addition of beta-estradiol or IL-3. Deprived FD/(delta)Raf-1:ER, but not FD/(delta)B-Raf:ER cells, expressed activated forms of MEK1 and ERK after beta-estradiol or IL-3 stimulation. Insulin or beta-estradiol alone did not induce FD/(delta)B-Raf:ER cells to re-enter the cell cycle, whereas cell cycle entry was observed upon their co-addition. Apoptosis was prevented in FD/(delta)B-Raf:ER cells when they were cultured in the presence of IL-3 or beta-estradiol, whereas they underwent apoptosis in their absence. Insulin by itself did not prevent apoptosis, however, upon DB-Raf:ER or DRaf-1:ER activation and addition of insulin, more than an additive effect was observed in both lines indicating that these path- ways synergized to prevent apoptosis. Raf isoforms differ in their abilities to control apoptosis and cell cycle progression and B-Raf requires insulin-activated pathways for full antiapoptotic and proliferative activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号