首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has long been known that human cells are more refractory than rodent cells against oncogenic transformation in vitro. Recent success to make normal human cells susceptible to oncogene-mediated transformation by the ectopic expression of the telomerase catalytic subunit (hTERT) raises the possibility that the difference in the regulation of telomerase expression can explain the different susceptibility to transformation between human and rodent cells. In the recent study, however, we demonstrated that normal human fibroblasts are still more resistant than normal rodent fibroblasts to oncogenic transformation even with the ectopic expression of hTERT. Our results clearly indicate that a difference in telomere biology can not fully account for the species difference in transformability, and that normal human cells have still undefined intrinsic mechanisms rendering them resistant to oncogenic transformation.  相似文献   

2.
Multiple tumor suppressor pathways negatively regulate telomerase   总被引:26,自引:0,他引:26  
Lin SY  Elledge SJ 《Cell》2003,113(7):881-889
  相似文献   

3.
During the process of immortalization, at least two mortality checkpoints, M1 and M2, must be bypassed. Cells that have bypassed M1 (senescence) have an extended life span, but are not necessarily immortal. Recent studies have shown that ectopic expression of the catalytic subunit of telomerase (hTERT) enables normal human cells to bypass senescence (M1) and oncogene transformed cells to avert crisis (M2) and become immortal. However, it is unclear whether hTERT expression is sufficient for normal human fibroblasts to overcome both M1 and M2 and become immortal. We have investigated the role of telomerase in immortalization by maintaining mass cultures of hTERT-transduced primary human fetal lung fibroblasts (MRC-5 cells) for very long periods of time (more than 2 years). In the present studies, up to 70% of MRC-5 cells were transduced with retroviral vectors that express hTERT. hTERT-transduced cells exhibited high levels of telomerase activity, elongation of telomeres, and proliferation beyond senescence. However, after proliferating for more than 36 population doublings (PDLs) beyond senescence, the overall growth rate of hTERT-expressing cells declined. During theses periods of reduced growth, hTERT-transduced MRC-5 cells exhibited features typical of cells in crisis, including an increased rate of cell death and polyploidy. In some instances, very late passage cells acquired a senescence-like phenotype characterized by arrest in the G1 phase of the cell cycle and greatly reduced DNA synthesis. At the onset of crisis, hTERT-transduced cells expressed high levels of telomerase and had very long telomeres, ranging up to 30 kb. Not all cells succumbed to crisis and, consequently, some cultures have proliferated beyond 240 PDLs, while another culture appears to be permanently arrested at 160 PDLs. Late passage MRC-5 cells, including postcrisis cells, displayed no signs of malignant transformation. Our results are consistent with the model in which telomerase and telomere elongation greatly extends cellular life span without inducing malignant changes. However, these investigations also indicate that hTERT-expressing cells may undergo crisis following an extended life span and that immortality is not the universal outcome of hTERT expression in normal diploid fibroblasts.  相似文献   

4.
Ectopic expression of telomerase results in an immortal phenotype in various types of normal cells, including primary human fibroblasts. In addition to its role in telomere lengthening, telomerase has now been found to have various functions, including the control of DNA repair, chromatin modification, and the control of expression of genes involved in cell cycle regulation. The investigations on the long-term effects of telomerase expression in normal human fibroblast highlighted that these cells show low frequencies of chromosomal aberrations. In this paper, we describe the karyotypic stability of human fibroblasts immortalized by expression of hTERT. The ectopic overexpression of telomerase is associated with unusual spontaneous as well as radiation-induced chromosome stability. In addition, we found that irradiation did not enhance plasmid integration in cells expressing hTERT, as has been reported for other cell types. Long-term studies illustrated that human fibroblasts immortalized by telomerase show an unusual stability for chromosomes and for plasmid integration sites, both with and without exposure to ionizing radiation. These results confirm a role for telomerase in genome stabilisation by a telomere-independent mechanism and point to the possibility for utilizing hTERT-immortalized normal human cells for the study of gene targeting.  相似文献   

5.
Human cells, including fibroblast strains that have been immortalized by telomerase, are much more resistant to transformation than rodent cells. Most of the experimental evidence suggests that transformation of human fibroblasts requires inactivation of both the retinoblastoma (pRb) and p53 tumor suppressors as well as the addition of one or more dominant oncogenes. By starting with strains of primary fibroblast (Leiden and Q34 cells) that are genetically deficient for p16INK4a, we have been able to generate anchorage independent colonies simply by addition of telomerase (hTERT) and either Ras or Myc. Importantly, the transformed cells appear to retain pRb and p53 functions and are essentially diploid. Whereas Leiden cells expressing the individual oncogenes did not form tumors in mice, the combination of hTERT, Myc and Ras enabled them to become tumorigenic, albeit at a frequency suggestive of an additional genetic event. Significantly, we have obtained karyotypically stable tumors without the need to use DNA tumor virus oncoproteins and without deliberate ablation of p53.  相似文献   

6.
Human cells, including fibroblast strains that have been immortalized by telomerase, are much more resistant to transformation than rodent cells. Most of the experimental evidence suggests that transformation of human fibroblasts requires inactivation of both the retinoblastoma (pRb) and p53 tumor suppressors as well as the addition of one or more dominant oncogenes. By starting with strains of primary fibroblast (Leiden and Q34 cells) that are genetically deficient for p16INK4a, we have been able to generate anchorage independent colonies simply by addition of telomerase (hTERT) and either Ras or Myc. Importantly, the transformed cells appear to retain pRb and p53 functions and are essentially diploid. Whereas Leiden cells expressing the individual oncogenes did not form tumors in mice, the combination of hTERT, Myc and Ras enabled them to become tumorigenic, albeit at a frequency suggestive of an additional genetic event. Significantly, we have obtained karyotypically stable tumors without the need to use DNA tumor virus oncoproteins and without deliberate ablation of p53.  相似文献   

7.
8.
Several reports have shown that the ectopic expression of the human telomerase catalytic subunit gene (hTERT) leads to an indefinite extension of the life span of human fibroblasts cultured in vitro without the appearance of cancer-associated changes. We infected two fibroblast strains derived from centenarian individuals with an hTERT containing retrovirus and isolated transduced massive populations (cen2tel and cen3tel). In both populations, hTERT expression reconstituted telomerase activity and extended the life span. In cen2tel, a net telomere lengthening was observed while, in cen3tel, telomeres stabilized at a length lower than that detected in senescent parental cells. Interestingly, both cen2tel and cen3tel cells developed chromosome anomalies, numerical first and structural thereafter. Moreover, cen3tel cells acquired the ability to grow in the absence of solid support, a typical feature of transformed cells. The results we present here highlight an unexpected possible outcome of cellular immortalization driven by telomerase reactivation, and indicate that, in some cases, an artificial extension of cellular replicative capacity can increase the probability of occurrence of genomic alterations, which can lead to cellular transformation.  相似文献   

9.
Fibroblasts derived from glucose-6-phosphate dehydrogenase (G6PD)-deficient patients display retarded growth and accelerated cellular senescence that is attributable to increased accumulation of oxidative DNA damage and increased sensitivity to oxidant-induced senescence, but not to accelerated telomere attrition. Here, we show that ectopic expression of hTERT stimulates telomerase activity and prevents accelerated senescence in G6PD-deficient cells. Stable clones derived from hTERT-expressing normal and G6PD-deficient fibroblasts have normal karyotypes, and display no sign of senescence beyond 145 and 105 passages, respectively. Activation of telomerase, however, does not prevent telomere attrition in earlier-passage cells, but does stabilize telomere lengths at later passages. In addition, we provide evidence that ectopic expression of hTERT attenuates the increased sensitivity of G6PD-deficient fibroblasts to oxidant-induced senescence. These results suggest that ectopic expression of hTERT, in addition to acting in telomere length maintenance by activating telomerase, also functions in regulating senescence induction.  相似文献   

10.
POT1 is a 3' telomeric single-stranded overhang binding protein that has been implicated in chromosome end protection, the regulation of telomerase function, and defining the 5' chromosome terminus. In human cancer cells that exhibit constitutive hTERT activity, hPOT1 exerts control over telomere length. Primary human fibroblasts express low levels of catalytically active hTERT in an S-phase-restricted manner that fails to counteract telomere attrition with cell division. Here, we show that diploid human fibroblasts in which hPOT1 expression has been suppressed harbor telomeres that are longer than control cells. This difference in telomere length delays the onset of replicative senescence and is dependent on S-phase-restricted hTERT expression. These findings are consistent with the view that hPOT1 promotes a nonextendable telomere state resistant to extension by S-phase-restricted telomerase. Manipulating this function of hPOT1 may thus hasten the cytotoxic effects of telomerase inhibition.  相似文献   

11.
12.
重建端粒酶活性延长人成纤维细胞寿命的研究   总被引:9,自引:1,他引:8  
汪铮  易静 《实验生物学报》2000,33(2):129-140
  相似文献   

13.
外源性端粒酶基因对人脐静脉内皮细胞的影响   总被引:1,自引:0,他引:1  
为了观察外源性端粒酶逆转录酶基因(hTERT)在人脐静脉血管内皮细胞(HUVEC)的表达及对细胞功能和生长的影响。采用逆转录病毒载体转导的方法,将hTERT基因转入HUVEC,检测基因转导后内皮细胞端粒酶的活性和生物学特性。结果发现hTERT转导后细胞端粒酶表达阳性,未转导的亲代细胞为阴性;转导细胞的体外生存时间延长但未永生化,而内皮细胞黏附分子表达的功能未受影响。  相似文献   

14.
The need for standardized experimental conditions to gain relevant and reproducible results has increased the demand for well characterized continuously growing cell lines that exhibit the characteristics of their normal counterparts. Immortalization of normal human cells by ectopic expression of the catalytic subunit of human telomerase (hTERT) has shown to result in highly differentiated cell lines. However, the influence of the increased telomerase activity on the protein expression profile was not investigated so far. Therefore, we have immortalized human umbilical vein endothelial cells (HUVECs) by hTERT overexpression and compared them to their normal early passage and senescent counterparts. This study, including a proteomic approach, shows that ectopic hTERT expression leads to a stable growing cell line. Although these cells are highly differentiated, the protein expression profile of the cell line is different to that of normal early passage and senescent cells.  相似文献   

15.
Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号