首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
真核生物DNA非编码区的组分分析   总被引:4,自引:0,他引:4  
在全基因组水平上,用直方图、混沌表示灰度图、距离差异度和信息熵差异度四种方法,研究了拟南芥、线虫、果蝇的DNA内含子、基因间隔区DNA、外显子三种区域的核苷酸短序列组分及组分复杂度.结果表明:a.不同基因组之间,不管基因数目多少,用4种方法得到的外显子部分其组分复杂度都比较接近,而非编码区部分的组分复杂度却很大.这一点定量地说明了物种之间的复杂程度,主要不体现在编码区部分,而体现在非编码区部分.b.同一基因组中,内含子的核苷酸短序列组分复杂度都是相似的,外显子和intergenic DNA部分的组分复杂度也是相似的.c.内含子和intergenic DNA在转录、剪切、二级结构等方面有很大的不同,但它们在核苷酸短序列组分上的差异却很小,说明内含子和intergenic DNA在转录、剪切、二级结构上的不同并不通过核苷酸短序列组分来进行限制.  相似文献   

2.
How mobile genetic elements molded eukaryotic genomes is a key evolutionary question that gained wider popularity when mobile DNA sequences were shown to comprise about half of the human genome. Although Saccharomyces cerevisiae does not suffer such "genome obesity", five families of LTR-retrotransposons, Ty1, Ty2, Ty3, Ty4, and Ty5 elements, comprise about 3% of its genome. The availability of complete genome sequences from several Saccharomyces species, including members of the closely related sensu stricto group, present new opportunities for analyzing molecular mechanisms for chromosome evolution, speciation, and reproductive isolation. In this review I present key experiments from both the pre- and current genomic sequencing eras suggesting how Ty elements mediate genome evolution.  相似文献   

3.
4.
5.
Gene identification in novel eukaryotic genomes by self-training algorithm   总被引:8,自引:0,他引:8  
Finding new protein-coding genes is one of the most important goals of eukaryotic genome sequencing projects. However, genomic organization of novel eukaryotic genomes is diverse and ab initio gene finding tools tuned up for previously studied species are rarely suitable for efficacious gene hunting in DNA sequences of a new genome. Gene identification methods based on cDNA and expressed sequence tag (EST) mapping to genomic DNA or those using alignments to closely related genomes rely either on existence of abundant cDNA and EST data and/or availability on reference genomes. Conventional statistical ab initio methods require large training sets of validated genes for estimating gene model parameters. In practice, neither one of these types of data may be available in sufficient amount until rather late stages of the novel genome sequencing. Nevertheless, we have shown that gene finding in eukaryotic genomes could be carried out in parallel with statistical models estimation directly from yet anonymous genomic DNA. The suggested method of parallelization of gene prediction with the model parameters estimation follows the path of the iterative Viterbi training. Rounds of genomic sequence labeling into coding and non-coding regions are followed by the rounds of model parameters estimation. Several dynamically changing restrictions on the possible range of model parameters are added to filter out fluctuations in the initial steps of the algorithm that could redirect the iteration process away from the biologically relevant point in parameter space. Tests on well-studied eukaryotic genomes have shown that the new method performs comparably or better than conventional methods where the supervised model training precedes the gene prediction step. Several novel genomes have been analyzed and biologically interesting findings are discussed. Thus, a self-training algorithm that had been assumed feasible only for prokaryotic genomes has now been developed for ab initio eukaryotic gene identification.  相似文献   

6.
A common belief is that evolution generally proceeds towards greater complexity at both the organismal and the genomic level, numerous examples of reductive evolution of parasites and symbionts notwithstanding. However, recent evolutionary reconstructions challenge this notion. Two notable examples are the reconstruction of the complex archaeal ancestor and the intron‐rich ancestor of eukaryotes. In both cases, evolution in most of the lineages was apparently dominated by extensive loss of genes and introns, respectively. These and many other cases of reductive evolution are consistent with a general model composed of two distinct evolutionary phases: the short, explosive, innovation phase that leads to an abrupt increase in genome complexity, followed by a much longer reductive phase, which encompasses either a neutral ratchet of genetic material loss or adaptive genome streamlining. Quantitatively, the evolution of genomes appears to be dominated by reduction and simplification, punctuated by episodes of complexification.  相似文献   

7.
8.
Genome size and complexity vary tremendously among eukaryotic species and their organelles. Comparisons across deeply divergent eukaryotic lineages have suggested that variation in mutation rates may explain this diversity, with increased mutational burdens favoring reduced genome size and complexity. The discovery that mitochondrial mutation rates can differ by orders of magnitude among closely related angiosperm species presents a unique opportunity to test this hypothesis. We sequenced the mitochondrial genomes from two species in the angiosperm genus Silene with recent and dramatic accelerations in their mitochondrial mutation rates. Contrary to theoretical predictions, these genomes have experienced a massive proliferation of noncoding content. At 6.7 and 11.3 Mb, they are by far the largest known mitochondrial genomes, larger than most bacterial genomes and even some nuclear genomes. In contrast, two slowly evolving Silene mitochondrial genomes are smaller than average for angiosperms. Consequently, this genus captures approximately 98% of known variation in organelle genome size. The expanded genomes reveal several architectural changes, including the evolution of complex multichromosomal structures (with 59 and 128 circular-mapping chromosomes, ranging in size from 44 to 192 kb). They also exhibit a substantial reduction in recombination and gene conversion activity as measured by the relative frequency of alternative genome conformations and the level of sequence divergence between repeat copies. The evolution of mutation rate, genome size, and chromosome structure can therefore be extremely rapid and interrelated in ways not predicted by current evolutionary theories. Our results raise the hypothesis that changes in recombinational processes, including gene conversion, may be a central force driving the evolution of both mutation rate and genome structure.  相似文献   

9.
Accumulating molecular data, particularly complete organellar genome sequences, continue to advance our understanding of the evolution of mitochondrial and chloroplast DNAs. Although the notion of a single primary origin for each organelle has been reinforced, new models have been proposed that tie the acquisition of mitochondria more closely to the origin of the eukaryotic cell per se than is implied by classic endosymbiont theory. The form and content of the ancestral proto-mitochondrial and proto-chloroplast genomes are becoming clearer but unusual patterns of organellar genome structure and organization continue to be discovered. The 'single-gene circle' arrangement recently reported for dinoflagellate chloroplast genomes is a notable example of a highly derived organellar genome.  相似文献   

10.
The first steps in eukaryotic evolution appear difficult to retrace despite the availability of an increasing amount of data. Current molecular phylogenies suggest that the eukaryotic tree would be better represented as a bush of major lineages whose order of emerge is poorly resolved. Such lack of resolution is often explained by a radiation event that would have left very little ancient signal in eukaryotic molecular markers. We suggest a complementary genomic approach that might help tackling this major issue. It rests on a hypothesis, the genome reduction hypothesis (GRH), suggesting that the divergence of major eukaryotic lineages might have been coupled with independent genomic reduction events, starting from a large and partially redundant chimerical genome. Thus, significant and coherent patterns of shared ancestral gene losses between major eukaryotic lineages might help polarizing the most basal nodes in the eukaryotic phylogeny. We propose a test for the GRH that exploits the increasing availability of complete eukaryotic genomes in public databases.  相似文献   

11.
The genomic peculiarities among microbial eukaryotes challenge the conventional wisdom of genome evolution. Currently, many studies and textbooks explore principles of genome evolution from a limited number of eukaryotic lineages, focusing often on only a few representative species of plants, animals and fungi. Increasing emphasis on studies of genomes in microbial eukaryotes has and will continue to uncover features that are either not present in the representative species (e.g. hypervariable karyotypes or highly fragmented mitochondrial genomes) or are exaggerated in microbial groups (e.g. chromosomal processing between germline and somatic nuclei). Data for microbial eukaryotes have emerged from recent genome sequencing projects, enabling comparisons of the genomes from diverse lineages across the eukaryotic phylogenetic tree. Some of these features, including amplified rDNAs, subtelomeric rDNAs and reduced genomes, appear to have evolved multiple times within eukaryotes, whereas other features, such as absolute strand polarity, are found only within single lineages.  相似文献   

12.
Recent sequencing of the metazoan Oikopleura dioica genome has provided important insights, which challenges the current understanding of eukaryotic genome evolution. Many genomic features of O. dioica show deviation from the commonly observed trends in other eukaryotic genomes. For instance, O. dioica has a rapidly evolving, highly compact genome with a divergent intron-exon organization. Additionally, O. dioica lacks the minor spliceosome and key DNA repair pathway genes. Even with a compact genome, O. dioica contains tandem repeats, comparable to other eukaryotes, and shows lineage-specific expansion of certain protein domains. Here, we review its genomic features in the context of current knowledge, discuss implications for contemporary biology and identify areas for further research. Analysis of the O. dioica genome suggests that non-adaptive forces such as elevated mutation rates might influence the evolution of genome architecture. The knowledge of unique genomic features and splicing mechanisms in O. dioica may be exploited for synthetic biology applications, such as generation of orthogonal splicing systems.  相似文献   

13.
Long Terminal Repeat (LTR) retrotransposons are ubiquitous components of plant genomes. Because of their copy-and-paste mode of transposition, these elements tend to increase their copy number while they are active. In addition, it is now well established that the differences in genome size observed in the plant kingdom are accompanied by variations in LTR retrotransposon content, suggesting that LTR retrotransposons might be important players in the evolution of plant genome size, along with polyploidy. The recent availability of large genomic sequences for many crop species has made it possible to examine in detail how LTR retrotransposons actually drive genomic changes in plants. In the present paper, we provide a review of the recent publications that have contributed to the knowledge of plant LTR retrotransposons, as structural components of the genomes, as well as from an evolutionary genomic perspective. These studies have shown that plant genomes undergo genome size increases through bursts of retrotransposition, while there is a counteracting process that tends to eliminate the transposed copies from the genomes. This process involves recombination mechanisms that occur either between the LTRs of the elements, leading to the formation of solo-LTRs, or between direct repeats anywhere in the sequence of the element, leading to internal deletions. All these studies have led to the emergence of a new model for plant genome evolution that takes into account both genome size increases (through retrotransposition) and decreases (through solo-LTR and deletion formation). In the conclusion, we discuss this new model and present the future prospects in the study of plant genome evolution in relation to the activity of transposable elements.  相似文献   

14.
Many genomic sequences have been recently published for bacteria that can replicate only within eukaryotic hosts. Comparisons of genomic features with those of closely related bacteria retaining free-living stages indicate that rapid evolutionary change often occurs immediately after host restriction. Typical changes include a large increase in the frequency of mobile elements in the genome, chromosomal rearrangements mediated by recombination among these elements, pseudogene formation, and deletions of varying size. In anciently host-restricted lineages, the frequency of insertion sequence elements decreases as genomes become extremely small and strictly clonal. These changes represent a general syndrome of genome evolution, which is observed repeatedly in host-restricted lineages from numerous phylogenetic groups. Considerable variation also exists, however, in part reflecting unstudied aspects of the population structure and ecology of host-restricted bacterial lineages.  相似文献   

15.
Eukaryotic transposable elements are ubiquitous and widespread mobile genetic entities. These elements often make up a substantial fraction of the host genomes in which they reside. For example, approximately 1/2 of the human genome was recently shown to consist of transposable element sequences. There is a growing body of evidence that demonstrates that transposable elements have been major players in genome evolution. A sample of this evidence is reviewed here with an emphasis on the role that transposable elements may have played in driving the evolution of eukaryotic complexity. A number of specific scenarios are presented that implicate transposable elements in the evolution of the complex molecular and cellular machinery that are characteristic of the eukaryotic domain of life.  相似文献   

16.
Origin and evolution of spliceosomal introns   总被引:1,自引:0,他引:1  
ABSTRACT: Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded 'introns first' held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers' Reports section.  相似文献   

17.
With the availability of genome sequences, the possibility of new phylogenetic reconstructions arises in order to reveal genomic relationships among organisms. According to the compositional-spectra (CS) approach proposed in our previous studies, any genomic sequence can be characterized by a distribution of frequencies of imperfect matching of words (oligonucleotides). In the current application of CS-analysis, we attempted to analyze the cluster structure of genomes across life. It appeared that compositional spectra show a clear three-group clustering of the compared prokaryotic and eukaryotic genomes. Unexpectedly, this grouping seriously differs from the classical Universal Tree of Life structure represented by common kingdoms known as Eubacteria, Archaebacteria, and Eukarya. The revealed CS-clustering displays high stability, putatively reflecting its objective nature, and still enigmatic biological significance that may result from convergent evolution driven by ecological selection. We believe that our approach provides a new and wider (compared to traditional methods) perspective of extracting genomic information of high evolutionary relevance.  相似文献   

18.

Background

Sequencing the genomes of multiple, taxonomically diverse eukaryotes enables in-depth comparative-genomic analysis which is expected to help in reconstructing ancestral eukaryotic genomes and major events in eukaryotic evolution and in making functional predictions for currently uncharacterized conserved genes.

Results

We examined functional and evolutionary patterns in the recently constructed set of 5,873 clusters of predicted orthologs (eukaryotic orthologous groups or KOGs) from seven eukaryotic genomes: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Encephalitozoon cuniculi. Conservation of KOGs through the phyletic range of eukaryotes strongly correlates with their functions and with the effect of gene knockout on the organism's viability. The approximately 40% of KOGs that are represented in six or seven species are enriched in proteins responsible for housekeeping functions, particularly translation and RNA processing. These conserved KOGs are often essential for survival and might approximate the minimal set of essential eukaryotic genes. The 131 single-member, pan-eukaryotic KOGs we identified were examined in detail. For around 20 that remained uncharacterized, functions were predicted by in-depth sequence analysis and examination of genomic context. Nearly all these proteins are subunits of known or predicted multiprotein complexes, in agreement with the balance hypothesis of evolution of gene copy number. Other KOGs show a variety of phyletic patterns, which points to major contributions of lineage-specific gene loss and the 'invention' of genes new to eukaryotic evolution. Examination of the sets of KOGs lost in individual lineages reveals co-elimination of functionally connected genes. Parsimonious scenarios of eukaryotic genome evolution and gene sets for ancestral eukaryotic forms were reconstructed. The gene set of the last common ancestor of the crown group consists of 3,413 KOGs and largely includes proteins involved in genome replication and expression, and central metabolism. Only 44% of the KOGs, mostly from the reconstructed gene set of the last common ancestor of the crown group, have detectable homologs in prokaryotes; the remainder apparently evolved via duplication with divergence and invention of new genes.

Conclusions

The KOG analysis reveals a conserved core of largely essential eukaryotic genes as well as major diversification and innovation associated with evolution of eukaryotic genomes. The results provide quantitative support for major trends of eukaryotic evolution noticed previously at the qualitative level and a basis for detailed reconstruction of evolution of eukaryotic genomes and biology of ancestral forms.  相似文献   

19.
The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.  相似文献   

20.
The organization of chromosomes into euchromatin and heterochromatin is amongst the most important and enigmatic aspects of genome evolution. Constitutive heterochromatin is a basic yet still poorly understood component of eukaryotic chromosomes, and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Although recent evidence indicates that the presence of transcribed genes in constitutive heterochromatin is a conserved trait that accompanies the evolution of eukaryotic genomes, the term heterochromatin is still considered by many as synonymous of gene silencing. In this paper, we comprehensively review data that provide a clearer picture of transcribed sequences within constitutive heterochromatin, with a special emphasis on Drosophila and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号