首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic (2 h/d x 8 weeks) exposure to magnetic field (MF; 50 Hz, 17.9 microT) in complete spinal cord (T13) transected rats restored food intake (FI), water intake (WI) and body weight (BW) which were decreased in the spinal cord injured rats. The results suggest a significant beneficial effect of chronic exposure to magnetic field of paraplegic rats.  相似文献   

2.
Food intake (FI), water intake (WI), urine output (UO), Na+ and K+ excretions were investigated for 2 days at 4-h intervals during continuous infusion of saline or vasopressin (VP) 1.0 UI/day, in male Brattleboro vasopressin-deficient rats. Continuous VP infusion reduced significantly 24-h amounts of WI and UO, and increased Na+ excretion. A significant (3.5 h) phase advance of the circadian rhythm of WI was observed, while the group circadian rhythm of Na+ excretion was eliminated due to irregular phase shifts in the different rats. The results suggest that VP do not play a role in the generation of the circadian rhythms of water input and output, but it may participate in their internal synchronization.  相似文献   

3.
The circadian rhythm of the body core temperature (T(c)) and the effects of changes in ambient temperatures on the homeostasis of T(c) in Otsuka Long Evans Tokushima Fatty (OLETF) rats, which are naturally occurring cholecystokinin (CCK)-A receptor (CCK-AR) gene knockout (-/-) rats, were examined. In addition, the peripheral responses to warming or cooling of the preoptic and anterior hypothalamic region (PO/AH) were determined. The circadian rhythm of T(c) in OLETF rats was similar to that in Long-Evans Tokushima (LETO) rats; this rhythm was characterized by a higher T(c) during the dark period and a lower T(c) during the light period. When the ambient temperature was changed within the limits of 0 degrees C to 30 degrees C, the changes in T(c) of LETO rats were associated with the changes in ambient temperature, whereas those in OLETF rats were dissociated from the temperature changes. The OLETF rats showed a large hysteresis. The peripheral responses to warming or cooling of PO/AH, including shivering of the neck muscle and changes in skin temperature of the tail and footpad, were similar in OLETF and LETO rats. To confirm the role of CCK-AR in the regulation of body temperature, the values of T(c) in the CCK-AR(-/-) mice were compared with those in CCK-B receptor (CCK-BR) (-/-), CCK-AR(-/-)BR(-/-), and wild-type mice. In the mice, the circadian rhythms of T(c) were the same, regardless of the genotype. Mice without CCK-AR showed larger hysteresis than mice with CCK-AR. From these results, we conclude that the lack of CCK-AR causes homeostasis of T(c) in rats and mice to deteriorate.  相似文献   

4.
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild-type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock-out mice (eNOS-/-) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12:12 h of a light:dark cycle (LD), under free-run in total darkness (DD), and after a phase delay shift of the LD cycle by -6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS-/- mice, resulting in a significantly greater amplitude. The period of the free-running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS-/- than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5-6 days, and resynchronization of MA occurred within 2-3 days. The results in telemetrically instrumented mice show that complete knock-out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS-/- mice.  相似文献   

5.
This study examined the effect of chronic 2G exposure on the regulation of body temperature (T(b)), activity (ACT), and circadian rhythms of mice. Five mice were implanted with biotelemetry units to record T(b) and ACT. The mice exhibited a stable daily mean of T(b) (37.1 +/- 2.1 degrees C) and ACT and robust circadian rhythms during the control 1G period. Mice exhibited a significant decline in T(b) (30.1 +/- 1.5 degrees C; t(4)=8.32, p<.01) and cessation of ACT within two hours following 2G onset. After 6 hours of continuous 2G exposure there was a recovery in T(b) (34.4 +/- 1.6 degrees C) that remained significantly below that of baseline (t(4)=3.66, p<.05). A similar pattern of recovery was seen following 12 hours of continuous 2G for ACT. A slower pattern of adaptation toward baseline levels occurred steadily over the next 6-13 days. Exposure to 2G also caused an immediate 4 day loss in circadian rhythm amplitude in both T(b) and ACT. Recovery to new steady state levels was achieved by 8 days and 13 days, respectively. These results demonstrate that under chronic 2G, the recovery time for the homeostatic steady-state values and circadian rhythms are shorter for the mouse than for the rat. These differences may be related to the scaling effects of 2G resulting from the mass difference between mice and rats.  相似文献   

6.
In earlier studies it has been found that rats respond to intracerebroventricular (i.c.v.) injection of cholecystokinin-octapeptide (CCK-8) with a febrile response characterized by rises of heat production and core temperature together with tail-skin vasoconstriction mediated by CCK2 receptors. Biotelemetric investigations of the same species have additionally shown that CCK-induced fever is accompanied by decreased locomotor activity. Similar data for mice have not been reported so far. In the present studies C57BL/6 mice were infused i.c.v. for 3 days with CCK-8 to see effects on body core temperature, locomotor activity, food intake and body weight. Biotelemetric monitoring disclosed a rise in daylight core temperature and a fall of night-time locomotor activity both lasting beyond the time of i.c.v. infusions. Food intake was suppressed only during infusion, while a significant decrease of body weight was sustained after the end of CCK-8 infusion. It is concluded that similar to rats mice also respond to i.c.v. infusion of CCK-8 with a fever-like (regulated) hyperthermia and some components of sickness behavior as measured by biotelemetry, and thus a CCK-mediated mechanism may contribute to fever genesis also in mice.  相似文献   

7.
The nitric oxide (NO) system is involved in the regulation of the cardiovascular system in controlling central and peripheral vascular tone and cardiac functions. It was the aim of this study to investigate in wild‐type C57BL/6 and endothelial nitric oxide synthase (eNOS) knock‐out mice (eNOS‐/‐) the contribution of NO on the circadian rhythms in heart rate (HR), motility (motor activity [MA]), and body temperature (BT) under various environmental conditions. Experiments were performed in 12∶12 h of a light:dark cycle (LD), under free‐run in total darkness (DD), and after a phase delay shift of the LD cycle by ?6 h (i.e., under simulation of a westward time zone transition). All parameters were monitored by radiotelemetry in freely moving mice. In LD, no significant differences in the rhythms of HR and MA were observed between the two strains of mice. BT, however, was significantly lower during the light phase in eNOS‐/‐ mice, resulting in a significantly greater amplitude. The period of the free‐running rhythm in DD was slightly shorter for all variables, though not significant. In general, rhythmicity was greater in eNOS‐/‐ than in C57 mice both in LD and DD. After a delay shift of the LD cycle, HR and BT were resynchronized to the new LD schedule within 5–6 days, and resynchronization of MA occurred within 2–3 days. The results in telemetrically instrumented mice show that complete knock‐out of the endothelial NO system—though expressed in the suprachiasmatic nuclei and in peripheral tissues—did not affect the circadian organization of heart rate and motility. The circadian regulation of the body temperature was slightly affected in eNOS‐/‐ mice.  相似文献   

8.
Compelling evidence from both human and animal studies suggests a physiological link between the circadian rhythm and metabolism but the underlying mechanism is still incompletely understood. We examined the role of PPARγ, a key regulator of energy metabolism, in the control of physiological and behavioral rhythms by analyzing two strains of whole-body PPARγ null mouse models. Systemic inactivation of PPARγ was generated constitutively by using Mox2-Cre mice (MoxCre/flox) or inducibly by using the tamoxifen system (EsrCre/flox/TM). Circadian variations in oxygen consumption, CO(2) production, food and water intake, locomotor activity, and cardiovascular parameters were all remarkably suppressed in MoxCre/flox mice. A similar phenotype was observed in EsrCre/flox/TM mice, accompanied by impaired rhythmicity of the canonical clock genes in adipose tissues and liver but not skeletal muscles or the kidney. PPARγ inactivation in isolated preadipocytes following exposure to tamoxifen led to a similar blockade of the rhythmicity of the clock gene expression. Together, these results support an essential role of PPARγ in the coordinated control of circadian clocks and metabolic pathways.  相似文献   

9.
The dorsomedial hypothalamic nucleus (DMH) has been proposed as a candidate for the neural substrate of a food-entrainable oscillator. The existence of a food-entrainable oscillator in the mammalian nervous system was inferred previously from restricted feeding-induced behavioral rhythmicity in rodents with suprachiasmatic nucleus lesions. In the present study, we have characterized the circadian rhythmicity of behavior in Wfs1-deficient mice during ad libitum and restricted feeding. Based on the expression of Wfs1 protein in the DMH it was hypothesized that Wfs1-deficient mice will display reduced or otherwise altered food anticipatory activity. Wfs1 immunoreactivity in DMH was found almost exclusively in the compact part. Restricted feeding induced c-Fos immunoreactivity primarily in the ventral and lateral aspects of DMH and it was similar in both genotypes. Wfs1-deficiency resulted in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding was not significantly different between the genotypes. Present results indicate that the effects of Wfs1-deficiency on behavioral rhythmicity are subtle suggesting that Wfs1 is not a major player in the neural networks responsible for circadian rhythmicity of behavior.  相似文献   

10.
Three homologs of the Drosophila Period gene have been identified in mammals. In mice, these three genes (mPer1, mPer2, and mPer3) have distinct roles in the circadian clockwork. While products of mPer1 and mPer2 play important roles in the maintenance of circadian rhythmicity, mPer3 gene products are dispensable for rhythmicity. Several studies also implicate mPER1 and mPER2 in transduction of photic information to the core circadian clockwork. The phase-shifting effects of light were examined in mPER1-deficient and mPER2-deficient mice using T cycle paradigms, in which mice received 1 h of light per day at an interval of T hours. To assess phase delays, repeated exposure to 1 h of light per day at T = 24 was used. To assess phase advances, exposure to 1-h light pulses at T = 22-h intervals was used. The degeneration of rhythmicity in the mutant mice prevented assessment of a response in most cases. Nevertheless, clear examples of phase delays and phase advances were observed in both mPer1 and mPer2 mutant mice. These results are not consistent with the hypothesis that mPER1 and mPER2 play necessary and nonoverlapping roles in mediating the effects of light on the circadian dock.  相似文献   

11.
Suckling-age rats display endogenous circadian rhythmicity of metabolic rate (MR) with energy-saving, torpor-like decreases, which are sympathetically controlled and suppressed by leptin treatment. We investigated whether neonatal monosodium glutamate (MSG) treatment, known to cause arcuate nucleus damage and adult-age obesity, alters energy balance in the first two postnatal weeks. Continuously recorded MR and core temperatures (T(c)) show that MSG treatment disinhibits the periodic, sympathetically controlled, energy-saving drops of T(c) and MR. Increased energy expenditure thus explains reduced body fat at normal lean body mass found in MSG-treated pups artificially nourished identically to controls. In MSG-treated mother-reared pups, lean body mass is additionally reduced, suggesting that MSG also reduces suckling. Plasma leptin levels are similar in controls and MSG-treated pups but higher per unit of fat mass in the latter. We conclude that the postweaning development of MSG obesity and depressed thermogenesis are preceded by an early phase of increased energy expenditure with decreased fat deposition during suckling age and hypothesize cell damage in the arcuate nucleus to be involved in both.  相似文献   

12.
Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ~4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.  相似文献   

13.
In females, estrogens play pivotal roles in preventing excess body weight (BW) gain. On the other hand, the roles of androgens in female BW, appetite, and energy metabolism have not been fully examined. We hypothesized that androgens' effects on food intake (FI) and BW regulation change according to the estrogens' levels. To evaluate this hypothesis, the effects of chronic testosterone administration in ovariectomized (OVX) female rats with or without estradiol supplementation were examined in this study. Chronic testosterone administration decreased BW, FI, white adipose tissue (WAT) weight, and adipocyte size in OVX rats, whereas it increased BW, WAT weight, and adipocyte size in OVX with estradiol-administered rats. In addition, chronic testosterone administration increased hypothalamic CYP19a1 mRNA levels in OVX rats, whereas it did not alter CYP19a1 mRNA levels in OVX with estradiol-administered rats, indicating that conversion of testosterone to estrogens in the hypothalamus may be activated in testosterone-administered OVX rats. Furthermore, chronic testosterone administration decreased hypothalamic TNF-α mRNA levels in OVX rats, whereas it increased hypothalamic IL-1β mRNA levels in OVX with estradiol-administered rats. On the other hand, IL-1β and TNF-α mRNA levels in visceral and subcutaneous WAT and liver were not changed by chronic testosterone administration in both groups. These data indicate that the effects of chronic testosterone administration on BW, FI, WAT weight, and adipocyte size were changed by estradiol treatment in female rats. Testosterone has facilitative effects on BW gain, FI, and adiposity under the estradiol-supplemented condition, whereas it has inhibitory effects in the non-supplemented condition. Differences in the responses of hypothalamic factors, such as aromatase and inflammatory cytokines, to testosterone might underlie these opposite effects.  相似文献   

14.
15.
Previous animal models of heat stress have been compromised by methodologies, such as restraint and anesthesia, that have confounded our understanding of the core temperature (T(c)) responses elicited by heat stress. Using biotelemetry, we developed a heat stress model to examine T(c) responses in conscious, unrestrained C57BL/6J male mice. Before heat stress, mice were acclimated for >4 wk to an ambient temperature (T(a)) of 25 degrees C. Mice were exposed to T(a) of 39.5 +/- 0.2 degrees C, in the absence of food and water, until they reached maximum T(c) of 42.4 (n = 11), 42.7 (n = 12), or 43.0 degrees C (n = 11), defined as mild, moderate, and extreme heat stress, respectively. Heat stress induced an approximately 13% body weight loss that did not differ by final group T(c); however, survival rate was affected by final T(c) (100% at 42.4 degrees C, 92% at 42.7 degrees C, and 46% at 43 degrees C). Hypothermia (T(c) < 34.5 degrees C) developed after heat stress, with the depth and duration of hypothermia significantly enhanced in the moderate and extreme compared with the mild group. Regardless of heat stress severity, every mouse that transitioned out of hypothermia (survivors only) developed a virtually identical elevation in T(c) the next day, but not night, compared with nonheated controls. To test the effect of the recovery T(a), a group of mice (n = 5) were acclimated for >4 wk and recovered at T(a) of 30 degrees C after moderate heat stress. Recovery at 30 degrees C resulted in 0% survival within approximately 2 h after cessation of heat stress. Using biotelemetry to monitor T(c) in the unrestrained mouse, we show that recovery from acute heat stress is associated with prolonged hypothermia followed by an elevation in daytime T(c) that is dependent on T(a). These thermoregulatory responses to heat stress are key biomarkers that may provide insight into heat stroke pathophysiology.  相似文献   

16.
Circadian rhythms in physiological processes may affect pharmacological actions of drugs. The purpose of this study was to determine whether pharmacokinetics or acute lethality (LD 50) of norfloxacin, exhibited circadian rhythmicity. Female Sprague- Dawley prepuberal rats (weight 115.8 ± 10.2 g) synchronized with a 12-h-light/ 12-h-dark cycle (lights on 7:00h) were used throughout the study. Norfloxacin pharmacokinetics after intraperitoneal administration at 4:00, 10:00, 16:00 and 22:00h was characterized. Intraperitoneal norfloxacin LD 50 was administered at 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00 h. Pharmacokinetic parameters and lethality percentages were analyzed by the cosinor method for the presence of circadian rhythmicity. The results showed evidence of circadian rhythmicity for norfloxacin k abs, t ½abs, t max, MRT abs, Cl t /f and AUC. Absorption was higher when the drug was administered during the rest (16:00 h) period, meanwhile elimination was higher when administered during the activity (22:00 h) period. No rhythmicity was determined for norfloxacin lethality. It is concluded that, in this study, time of administration modifies the pharmacokinetics of norfloxacin.  相似文献   

17.
Ghrelin, an endogenous ligand for the growth-hormone-secretagogue receptor, is a 28-amino acid peptide with a post-translational acyl modification necessary for its activity. It has central nervous system actions that affect appetite, body mass and energy balance. An intracerebroventricular (ICV) injection protocol of sub-nanomolar doses of ghrelin, known to alter the morphology of ACTH and GH producing pituicytes and plasma levels of these hormones, was used to provide an overview of metabolic changes linked to energy metabolism. Variables measured were: food intake (FI), water intake (WI), fecal mass, urine volume, body weight (BW), retroperitoneal (RP) and epididymal (EPI) white adipose tissue (WAT), and changes in serum leptin, insulin, triglycerides, cholesterol, and glucose. Five injections of rat ghrelin or PBS (n = 8 per group) were given ICV every 24 h (1 μg/5 μL PBS) to adult male rats. Ghrelin had a positive and cumulative effect on FI, WI and BW (p < 0.05), but not feces mass or urine volume (p > 0.05). Centrally applied ghrelin clearly increased RP WAT (by 235%, p < 0.001), EPI WAT (by 85%, p < 0.05) and serum insulin levels (by 43%, p < 0.05), and decreased serum leptin levels (by 77%, p < 0.05) without (p > 0.05) evoking changes in blood triglyceride cholesterol, or glucose levels.

These data and the available literature clearly document that exposure of the brain of normal rats, over time, to sub-nanomolar doses of ghrelin results in metabolic dysregulation culminating in increased body mass, consummatory behavior, and lipid stores as well as changes in blood leptin/insulin levels. Thus, modulation of central ghrelin receptors may represent a pharmacological approach for controlling multiple factors involved in energy balance and obesity.  相似文献   


18.
The circadian system, driven by the suprachiasmatic nucleus (SCN), regulates properties of cardiovascular function. The dysfunction of this timing system can result in cardiac pathology. The neuropeptide vasoactive intestinal peptide (VIP) is crucial for circadian rhythms in a number of biological processes including SCN electrical activity and wheel running behavior. Anatomic evidence indicates that SCN neurons expressing VIP are well positioned to drive circadian regulation of cardiac function through interactions with the autonomic centers. In this study, we tested the hypothesis that loss of VIP would result in circadian deficits in heart rate (HR) and clock gene expression in cardiac tissue. We implanted radiotelemetry devices into VIP-deficient mice and wild-type (WT) controls and continuously recorded HR, body temperature, and cage activity in freely moving mice. Under light-dark conditions, VIP-deficient mice displayed weak rhythms in HR, body temperature, and cage activity, with onsets that were advanced in phase compared with WT mice. Similarly, clock gene expression in cardiac tissue was rhythmic but phase advanced in mutant mice. In constant darkness, the normal circadian rhythms in HR were lost in VIP-deficient mice; however, most mutant mice continued to exhibit circadian rhythms of body temperature with shortened free-running period. The loss of VIP altered, but did not abolish, autonomic regulation of HR. Analysis of the echocardiograms did not find any evidence for a loss of cardiac function in VIP-deficient mice, and the size of the hearts did not differ between genotypes. These results demonstrate that VIP is an important regulator of physiological circadian rhythmicity in the heart.  相似文献   

19.
It was previously shown that sodium nitroprusside (NP) stimulates food (FI) and water (WI) intakes when injected intraperitoneally (i.p.) in male rats deprived for 1-h of both food and water during day time. The present work shows that: 1) intramuscular NP increased only water intake; 2) when NP was i.p. injected simultaneously without 1-h deprivation it slightly reduced both intakes in the first 30 min but stimulated significantly FI between 30 and 60 min, and 3) it increased significantly FI even in absence of available water, while WI in absence of food was practically not affected. In conclusion NP effect on FI does originate mainly in the splanchnic area, it requires a latency of about 30 min, and stimulation of FI by NP triggers an increase in WI and not the other way around.  相似文献   

20.
Effects of long-term dietary restriction on body temperature and its circadian changes were investigated in 3.5- and 14.5-month-old male Long-Evans rats. Animals were either fed and libitum or kept on a restricted diet for 8 weeks. Purina Lab Chow was constantly available to the ad libitum-fed groups, while half portions of their daily food consumption were given to age-matched diet-restricted groups every day. A highly significant lowering of body temperature in middle-aged diet-restricted (MR) rats was not observed until their food intake had been restricted for 5 weeks compared with that of the middle-aged ad libitum-fed (MA) group as well as that of the young diet-restricted (YR) rats. Eight weeks after diet restriction, both the circadian pattern of body temperature and its diurnal peak-trough difference remained almost unchanged in all four groups, while the average body temperature of MR rats was greatly lower than that of the YR group and that of MA animals. No significant difference in average body temperature was found between the young ad libitum-fed (YA) rats and the MA group. These data suggest that the average body temperature and its circadian changes in ad libitum-fed rats, at least before the age of 14.5 months, is not age-related, while the effect of dietary restriction on body temperature may be modified with increasing age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号