首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sim SP  Pilch DS  Liu LF 《Biochemistry》2000,39(32):9928-9934
Many DNA binding ligands (e.g., nogalamycin, actinomycin D, terbenzimidazoles, indolocarbazoles, nitidine, and coralyne) and various types of DNA lesions (e.g., UV dimers, DNA mismatches, and abasic sites) are known to stimulate topoisomerase I-mediated DNA cleavage. However, the mechanism(s) by which these covalent and noncovalent DNA interactions stimulate topoisomerase I-mediated DNA cleavage remains unclear. Using nogalamycin as a model, we have studied the mechanism of ligand-induced topoisomerase I-mediated DNA cleavage. We show by both mutational and DNA footprinting analyses that the binding of nogalamycin to an upstream site (from position -6 to -3) can induce highly specific topoisomerase I-mediated DNA cleavage. Substitution of this nogalamycin binding site with a DNA bending sequence (A(5)) stimulated topoisomerase I-mediated DNA at the same site in the absence of nogalamycin. Replacement of the A(5) sequence with a disrupted DNA bending sequence (A(2)TA(2)) significantly reduced the level of topoisomerase I-mediated DNA cleavage. These results, together with the known DNA bending property of nogalamycin, suggest that the nogalamycin-DNA complex may provide a DNA structural bend to stimulate topoisomerase I-mediated DNA cleavage.  相似文献   

2.
DNA topoisomerase I is a major cellular target for antitumor indolocarbazole derivatives (IND) such as the antibiotic rebeccamycin and the synthetic analogue NB-506 which is undergoing phase I clinical trials. We have investigated the mechanism of topoisomerase I inhibition by a rebeccamycin analogue, R-3, using the wild-type human topoisomerase I and a well-characterized recombinant enzyme, F361S. The catalytic activity of this mutant remains fully intact, but the enzyme is resistant to inhibition by camptothecin (CPT). Here we show that the mutated enzyme is cross-resistant to the rebeccamycin analogue. Despite their profound structural differences, CPT and R-3 interfere similarly with the activity of the wild-type and mutant topoisomerase I enzymes, and the drug-induced cleavable complexes are equally sensitive to the NaCl concentration. CPT and IND likely recognize identical structural elements of the topoisomerase I-DNA covalent complex; however, differences do exist in terms of sequence-specificity of topoisomerase I-mediated DNA cleavage. For the first time, a molecular model showing that CPT and IND share common steric and electronic features is proposed. The model helps to identify a specific pharmacophore for topoisomerase I inhibitors.  相似文献   

3.
Human topoisomerase I plays an important role in removing positive DNA supercoils that accumulate ahead of replication forks. It also is the target for camptothecin-based anticancer drugs that act by increasing levels of topoisomerase I-mediated DNA scission. Evidence suggests that cleavage events most likely to generate permanent genomic damage are those that occur ahead of DNA tracking systems. Therefore, it is important to characterize the ability of topoisomerase I to cleave positively supercoiled DNA. Results confirm that the human enzyme maintains higher levels of cleavage with positively as opposed to negatively supercoiled substrates in the absence or presence of anticancer drugs. Enhanced drug efficacy on positively supercoiled DNA is due primarily to an increase in baseline levels of cleavage. Sites of topoisomerase I-mediated DNA cleavage do not appear to be affected by supercoil geometry. However, rates of ligation are slower with positively supercoiled substrates. Finally, intercalators enhance topoisomerase I-mediated cleavage of negatively supercoiled substrates but not positively supercoiled or linear DNA. We suggest that these compounds act by altering the perceived topological state of the double helix, making underwound DNA appear to be overwound to the enzyme, and propose that these compounds be referred to as ‘topological poisons of topoisomerase I’.  相似文献   

4.
Sensitive sites for covalent trapping of eukaryotic topoisomerase I at DNA structural anomalies were mapped by a new method using purified enzyme and defined DNA substrates. To insure that the obtained topoisomerase I trapping patterns were not influenced by DNA sequence variations, a single DNA imperfection was placed centrally within a homonucleotide track. Mapping of topoisomerase I-mediated irreversible cleavage sites on homopolymeric DNA substrates containing mismatches showed trapping of the enzyme in several positions in close vicinity of the DNA imperfection, with a strong preference for the 5' junction between the duplex DNA and the base-pairing anomaly. On homopolymeric DNA substrates containing a nick, sites of topoisomerase I-mediated cleavage on the intact strand were located just opposite to the nick and from one to ten nucleotides 5' to the nick. Sites of enzyme-mediated cleavage next to a nick and an immobile single-stranded branch were located 5' to the strand interruption in distances of two to six nucleotides and two to ten nucleotides, respectively. Taken together these findings suggest that covalent trapping of topoisomerase I proceeds at positions adjacent to mismatches, nicks and single-stranded branches, where the cleavage reaction is allowed and the ensuing ligation reaction prevented. In principle, the developed interference method might be of general utility to define topoisomerase-DNA interactions relative to different types of structural anomalies.  相似文献   

5.
In this study, we further examined the sequence selectivity of camptothecin in mammalian topoisomerase I cDNA from human and Chinese hamster. In the absence of camptothecin, almost all the bases at the 3'-terminus of cleavage sites are T for calf thymus and wheat germ topoisomerase I. In addition, wheat germ topoisomerase I exhibits preference for C (or not T) at -3 and for T at -2 position. As for camptothecin-stimulated cleavage with topoisomerase I, G (or not T) at +1 is an additional strong preference. This sequence selectivity of camptothecin is similar to that previously found in SV40 DNA, suggesting that camptothecin preferentially interacts with topoisomerase I-mediated cleavage sites where G is the base at the 5'-terminus. These results support the stacking model of camptothecin (Jaxel et al. (1991) J. Biol. Chem. 266, 20418-20423). Comparison of calf thymus and wheat germ topoisomerase I-mediated cleavage sites in the presence of camptothecin shows that many major cleavage sites are similar. However, the relative intensities are often different. One of the differences was attributable to a bias at position -3 where calf thymus topoisomerase I prefers G and wheat germ topoisomerase I prefers C. This difference may explain the unique patterns of cleavage sites induced by the two enzymes. Sequencing analysis of camptothecin-stimulated cleavage sites in the surrounding regions of point mutations in topoisomerase I cDNA, which were found in camptothecin-resistant cell lines, reveals no direct relationship between DNA cleavage sites in vitro and mutation sites.  相似文献   

6.
Topoisomerase I is a ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins (CPTs). These drugs stimulate DNA cleavage by topoisomerase I but exhibit little sequence preference, inducing toxicity and side effects. A convenient strategy to confer sequence specificity consists of the linkage of topoisomerase poisons to DNA sequence recognition elements. In this context, triple-helix-forming oligonucleotides (TFOs) covalently linked to CPTs were investigated for the capacity to direct topoisomerase I-mediated DNA cleavage in cells. In the first part of our study, we showed that these optimized conjugates were able to regulate gene expression in cells upon the use of a Photinus pyralis luciferase reporter gene system. Furthermore, the formation of covalent topoisomerase I/DNA complexes by the TFO-CPT conjugates was detected in cell nuclei. In the second part, we elucidated the molecular specificity of topoisomerase I cleavage by the conjugates by using modified DNA targets and in vitro cleavage assays. Mutations either in the triplex site or in the DNA duplex receptor are not tolerated; such DNA modifications completely abolished conjugate-induced cleavage all along the DNA. These results indicate that these conjugates may be further developed to improve chemotherapeutic cancer treatments by targeting topoisomerase I-induced DNA cleavage to appropriately chosen genes.  相似文献   

7.
Many agents (e.g. camptothecins, indolocarbazoles, indenoisoquinolines, and dibenzonaphthyridines) stimulate topoisomerase I (TOP1)-mediated DNA cleavage (a behavior termed topoisomerase I poisoning) by interacting with both the DNA and the enzyme at the site of cleavage (typically by intercalation between the -1 and +1 base-pairs). The bibenzimidazoles, which include Hoechst 33258 and 33342, are a family of DNA minor groove-directed agents that also stimulate topoisomerase I-mediated DNA cleavage. However, the molecular mechanism by which these ligands poison TOP1 is poorly understood. Toward this goal, we have used a combination of mutational, footprinting, and DNA binding affinity analyses to define the DNA binding site for Hoechst 33258 and a related derivative that results in optimal induction of TOP1-mediated DNA cleavage. We show that this DNA binding site is located downstream from the site of DNA cleavage, encompassing the base-pairs from position +4 to +8. The distal nature of this binding site relative to the site of DNA cleavage suggests that minor groove-directed agents like the bibenzimidazoles poison TOP1 via a mechanism distinct from compounds like the camptothecins, which interact at the site of cleavage.  相似文献   

8.
The marine alkaloid lamellarin D (LAM-D) has been recently characterized as a potent poison of human topoisomerase I endowed with remarkable cytotoxic activities against tumor cells. We report here the first structure-activity relationship study in the LAM-D series. Two groups of triester compounds incorporating various substituents on the three phenolic OH at positions 8, 14 and 20 of 6H-[1]benzopyrano[4',3':4,5]pyrrolo[2,1-a]isoquinolin-6-one pentacyclic planar chromophore typical of the parent alkaloid were tested as topoisomerase I inhibitors. The non-amino compounds in group A showed no activity against topoisomerase I and were essentially non cytotoxic. In sharp contrast, compounds in group B incorporating amino acid residues strongly promoted DNA cleavage by human topoisomerase I. LAM-D derivatives tri-substituted with leucine, valine, proline, phenylalanine or alanine residues, or a related amino side chain, stabilize topoisomerase I-DNA complexes. The DNA cleavage sites detected at T downward arrow G or C downward arrow G dinucleotides with these molecules were identical to that of LAM-D but slightly different from those seen with camptothecin which stimulates topoisomerase I-mediated cleavage at T downward arrow G only. In the DNA relaxation and cleavage assays, the corresponding Boc-protected compounds and the analogues of the non-planar LAM-501 derivative lacking the 5-6 double bond in the quinoline B-ring showed no effect on topoisomerase I and were considerably less cytotoxic than the corresponding cationic compounds in the LAM-D series. The presence of positive charges on the molecules enhances DNA interaction but melting temperature studies indicate that DNA binding is not correlated with topoisomerase I inhibition or cytotoxicity. Cell growth inhibition by the 41 lamellarin derivatives was evaluated with a panel of tumor cells lines. With prostate (DU-145 and LN-CaP), ovarian (IGROV and IGROV-ET resistant to ecteinascidin-743) and colon (LoVo and LoVo-Dox cells resistant to doxorubicin) cancer cells (but not with HT29 colon carcinoma cells), the most cytotoxic compounds correspond to the most potent topoisomerase I poisons. The observed correlation between cytotoxicity and topoisomerase I inhibition strongly suggests that topoisomerase I-mediated DNA cleavage assays can be used as a guide to the development of superior analogues in this series. LAM-D is the lead compound of a new promising family of antitumor agents targeting topoisomerase I and the amino acid derivatives appear to be excellent candidates for a preclinical development.  相似文献   

9.
Abstract

A partial DNA duplex containing a high efficiency topoisomerase I cleavage site was substituted singly at each of three sites with 3′-deoxyadenosine. Depending on the site of substitution, the facility of the topoisomerase I-mediated cleavage or ligation reactions was altered. Inclusion of the modified nucleoside at the 5′-end of the acceptor oligonucleotide diminished the rate of religation following substrate cleavage by the enzyme.

  相似文献   

10.
11.
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3′-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5′ side is attributed to the structural differences of the 3′ and 5′ duplex–triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I–DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.  相似文献   

12.
Topoisomerase I is an ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy for camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin. To achieve a sequence-specific cleavage of DNA by topoisomerase I, a triple helix-forming oligonucleotide was covalently linked to indolocarbazole-type topoisomerase I poisons. The three indolocarbazole-oligonucleotide conjugates investigated were able to direct topoisomerase I cleavage at a specific site based upon sequence recognition by triplex formation. The efficacy of topoisomerase I-mediated DNA cleavage depends markedly on the intrinsic potency of the drug. We show that DNA cleavage depends also upon the length of the linker arm between the triplex-forming oligonucleotide and the drug. Based on a known structure of the DNA-topoisomerase I complex, a molecular model of the oligonucleotide conjugates bound to the DNA-topoisomerase I complex was elaborated to facilitate the design of a potent topoisomerase I inhibitor-oligonucleotide conjugate with an optimized linker between the two moieties. The resulting oligonucleotide-indolocarbazole conjugate at 10 nM induced cleavage at the triple helix site 2-fold more efficiently than 5 microM of free indolocarbazole, while the other drug-sensitive sites were not cleaved. The rational design of drug-oligonucleotide conjugates carrying a DNA topoisomerase poison may be exploited to improve the efficacy and selectivity of chemotherapeutic cancer treatments by targeting specific genes and reducing drug toxicity.  相似文献   

13.
Topoisomerase IB controls DNA topology by cleaving DNA transiently. This property is used by inhibitors, such as camptothecin, that stabilize, by inhibiting the religation step, the cleavage complex, in which the enzyme is covalently attached to the 3'-phosphate of the cleaved DNA strand. These drugs are used in clinics as antitumor agents. Because three-dimensional structural studies have shown that camptothecin derivatives act as base pair mimics and intercalate between two base pairs in the ternary DNA-topoisomerase-inhibitor complex, we hypothesized that base pairs mimics could act like campthotecin and inhibit the religation reaction after the formation of the topoisomerase I-DNA cleavage complex. We show here that three base pair mimics, nucleobases analogues of the aminophenyl-thiazole family, once targeted specifically to a DNA sequence were potent topoisomerase IB inhibitors. The targeting was achieved through covalent linkage to a sequence-specific DNA ligand, a triplex-forming oligonucleotide, and was necessary to position and keep the nucleobase analogue in the cleavage complex. In the absence of triplex formation, only a weak binding to the DNA and topoisomerase I-mediated DNA cleavage was observed. The three compounds were equally active once conjugated, implying that the intercalation of the nucleobase upon triplex formation is the essential feature for the inhibition activity.  相似文献   

14.
15.
A new technique for uncoupling the cleavage and religation half-reactions of topoisomerase I at a specific site has been developed. The technique takes advantage of a suicidal DNA substrate to attain enzyme-mediated cleavage without concomitant religation. Efficient religation can be achieved, subsequently, by addition of an oligonucleotide capable of hybridising to the non-cleaved strand of the suicide DNA substrate. The technique was used to study the effect of different compounds on the half-reactions of topoisomerase I. It was shown that topoisomerase I-mediated cleavage was inhibited by NaCl concentrations higher than 200 mM, while the religation reaction seemed unaffected by concentrations as high as 3 M-NaCl. The divalent cations Mg2+, Ca2+ and Mn2+ were found to enhance the cleavage but not the religation reaction of topoisomerase I, whereas Cu2+ and Zn2+ inhibited both reactions. Furthermore, the effect of the anti-neoplastic agent, camptothecin, on the half-reactions of topoisomerase I was investigated. It was found that the drug did not affect the cleavage reaction of topoisomerase I at the studied site, while the religation reaction of the enzyme was inhibited. Camptothecin was found to stabilise the enzyme-DNA cleavage complex even when the drug was added after complex formation.  相似文献   

16.
The minimal DNA duplex requirements for topoisomerase I-mediated cleavage at a specific binding sequence were determined by analyzing the interaction of the enzyme with sets of DNA substrates varying successively by single nucleotides at the 5'- or 3' end of either strand. Topoisomerase I cleavage experiments showed a minimal region of nine nucleotides on the scissile strand and five nucleotides on the noncleaved strand. On the scissile strand, seven of the nine nucleotides were situated upstream to the cleavage site, while all five nucleotides required on the non-cleaved strand were located to this side. The results suggested that topoisomerase I bound tightly to this region, stabilizing the DNA duplex extensively. On minimal substrates which were partially single-stranded downstream to the cleavage site, cleavage was suicidal, that is, the enzyme was able to cleave the substrates, but unable to perform the final religation.  相似文献   

17.
The DNA unwinding effects of some 9-aminoacridine derivatives were compared under reaction conditions that could be used to study drug-induced topoisomerase II inhibition. An assay was designed to determine drug-induced DNA unwinding by using L1210 topoisomerase I. 9-aminoacridines could be ranked by decreasing unwinding potency: compound C greater than or equal to 9-aminoacridine greater than o-AMSA greater than or equal to compound A greater than compound B greater than m-AMSA. Ethidium bromide was more potent than any of the 9-aminoacridines. This assay is a fast and simple method to compare DNA unwinding effects of intercalators. It led to the definition of a drug intrinsic unwinding constant (k). An additional finding was that all 9-aminoacridines and ethidium bromide inhibited L1210 topoisomerase I. Enzyme inhibition was detectable at low enzyme concentrations (less than or equal to 1 unit) and when the kinetics of topoisomerase I-mediated DNA relaxation was studied. Topoisomerase I inhibition was not associated with DNA swivelling or cleavage.  相似文献   

18.
To achieve a sequence-specific DNA cleavage by topoisomerase I, derivatives of the antitumor drug camptothecin have been covalently linked to triple helix-forming oligonucleotides that bind in a sequence-specific manner to the major groove of double-helical DNA. Triplex formation at the target sequence positions the drug selectively at the triplex site, thereby stimulating topoisomerase I-mediated DNA cleavage at this site. In a continuous effort to optimize this strategy, a broad set of conjugates consisting of (i) 16-20-base-long oligonucleotides, (ii) alkyl linkers of variable length, and (iii) camptothecin derivatives substituted on the A or B quinoline ring were designed and synthesized. Analysis of the cleavage sites at nucleotide resolution reveals that the specificity and efficacy of cleavage depends markedly on the length of both the triple-helical structure and the linker between the oligonucleotide and the poison. The optimized hybrid molecules induced strong and highly specific cleavage at a site adjacent to the triplex. Furthermore, the drug-stabilized DNA-topoisomerase I cleavage complexes were shown to be more resistant to salt-induced reversal than the complexes induced by camptothecin alone. Such rationally designed camptothecin conjugates could provide useful antitumor drugs directed selectively against genes bearing the targeted triplex binding site. In addition, they represent a powerful tool to probe the molecular interactions in the DNA-topoisomerase I complex.  相似文献   

19.
Protein kinase C (PKC) is an important constituent of the signaling pathways involved in apoptosis. We report here that like staurosporine, withaferin A is a potent inhibitor of PKC. In Leishmania donovani, the inhibition of PKC by withaferin A causes depolarization of DeltaPsim and generates ROS inside cells. Loss of DeltaPsim leads to the release of cytochrome c into the cytosol and subsequently activates caspase-like proteases and oligonucleosomal DNA cleavage. Moreover, in treated cells, oxidative DNA lesions facilitate the stabilization of topoisomerase I-mediated cleavable complexes, which also contribute to DNA fragmentation. However, withaferin A and staurosporine cannot induce cleavable complex formation in vitro with recombinant topoisomerase I nor with nuclear extracts from control cells. Taken together, our results indicate that inhibition of PKC by withaferin A is a central event for the induction of apoptosis and that the stabilization of topoisomerase I-DNA complex is necessary to amplify apoptotic process.  相似文献   

20.
Topoisomerase I is an ubiquitous DNA cleaving enzyme and an important therapeutic target in cancer chemotherapy for the camptothecins as well as for indolocarbazole antibiotics such as rebeccamycin and its synthetic derivatives, which stabilize the cleaved DNA-topoisomerase I complex. The covalent linkage of a triple helixforming oligonucleotide to camptothecin or to the indolocarbazole derivative R-6 directs DNA cleavage by topoisomerase I to specific sequences. Sequence-specific recognition of DNA is achieved by the triple helix-forming oligonucleotide, which binds to the major groove of double-helical DNA and positions the drug at a specific site. The efficacy of topoisomerase I-induced DNA cleavage mediated by the rebeccamycin-conjugate and the camptothecin-conjugate was compared and related to the intrinsic potency of the isolated drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号