首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the alpha-crystallin domain of 4 of the small heat shock proteins (sHsp) (Hsp27/HspB1, alphaA-crystallin/ HspB4, alphaB-crystallin/HspB5, and HspB8) are responsible for dominant inherited diseases in humans. One such mutation at a highly conserved arginine residue was shown to cause major conformational defects and intracellular aggregation of alphaA- and alphaB-crystallins and HspB8. Here, we studied the effect of this Arg mutation on the structure and function of Hsp27. Chinese hamster Hsp27 with Arg148 replaced by Gly (Hsp27R148G) formed dimers in vitro and in vivo, which contrasted with the 12- or 24-subunit oligomers formed by the wild-type protein (Hsp27WT). Despite these alterations, Hsp27R148G had a chaperone activity almost as high as Hsp27WT. The dimers of Hsp27R148G did not further deoligomerize on phosphorylation and like the dimers formed by phosphorylated Hsp27WT were not affected by the deletion of the N-terminal WD/EPF (single letter amino acid code) motif, suggesting that mutation of Arg148, deletion of the N-terminal WD/EPF motif, and phosphorylation of Ser90 may produce similar structural perturbations. Nevertheless, the structure of Hsp27R148G appeared unstable, and the mutated protein accumulated as aggregates in many cells. Both a lower basal level of phosphorylation of Hsp27R148G and the coexpression of Hsp27WT could reduce the frequency of formation of these aggregates, suggesting possible mechanisms regulating the onset of the sHsp-mediated inherited diseases.  相似文献   

2.
The small heat shock protein 27 (Hsp27 or HSPB1) is an oligomeric molecular chaperone in vitro that is associated with several neuromuscular, neurological, and neoplastic diseases. Although aspects of Hsp27 biology are increasingly well known, understanding of the structural basis for these involvements or of the functional properties of the protein remains limited. As all 11 human small heat shock proteins (sHsps) possess an α-crystallin domain, their varied functional and physiological characteristics must arise from contributions of their nonconserved sequences. To evaluate the role of two such sequences in Hsp27, we have studied three Hsp27 truncation variants to assess the functional contributions of the nonconserved N- and C-terminal sequences. The N-terminal variants Δ1-14 and Δ1-24 exhibit little chaperone activity, somewhat slower but temperature-dependent subunit exchange kinetics, and temperature-independent self-association with formation of smaller oligomers than wild-type Hsp27. The C-terminal truncation variants exhibit chaperone activity at 40 °C but none at 20 °C, limited subunit exchange, and temperature-independent self-association with an oligomer distribution at 40 °C that is very similar to that of wild-type Hsp27. We conclude that more of the N-terminal sequence than simply the WPDF domain is essential in the formation of larger, native-like oligomers after binding of substrate and/or in binding of Hsp27 to unfolding peptides. On the other hand, the intrinsically flexible C-terminal region drives subunit exchange and thermally-induced unfolding, both of which are essential to chaperone activity at low temperature and are linked to the temperature dependence of Hsp27 self-association.  相似文献   

3.
The alpha-crystallin-related, small heat shock proteins (sHsps), despite their overall variability in sequence, have discrete regions of conserved sequence that are involved in structural organization, as well as nonconserved regions that may perform similar roles in each protein. Recent X-ray diffraction analyses of an archeal and a plant sHsp have revealed both similarities and differences in how they are organized, suggesting that there is variability, particularly in the oligomeric organization of sHsps. As an adjunct to crystallographic analysis of sHsp structure, we employed the yeast 2-hybrid system to detect interactions between peptide regions of the sHsp of Neurospora crassa, Hsp30. We found that the conserved alpha-crystallin domain can be divided into N-terminal and C-terminal subdomains that interact strongly with one another. This interaction likely represents the tertiary contacts of the monomer that were visualized in the crystallographic structures of MjHsp16.5 and wheat Hsp16.9. The conserved sHsp monomeric fold is apparently determined by these regions of conserved sequence. We found that the C-terminal portion of the alpha-crystallin domain also interacts with itself in 2-hybrid assays; however, this interaction requires peptide extension into the semiconserved carboxyl tail. This C-terminal association may represent a principal contact site between dimers that contributes to higher-order assembly, as seen for the crystallized sHsps.  相似文献   

4.
Hsp90 is a dimeric, ATP-regulated molecular chaperone. Its ATPase cycle involves the N-terminal ATP binding domain (amino acids (aa) 1-272) and, in addition, to some extent the middle domain (aa 273-528) and the C-terminal dimerization domain (aa 529-709). To analyze the contribution of the different domains and the oligomeric state on the progression of the ATPase cycle of yeast Hsp90, we created deletion constructs lacking either the C-terminal or both the C-terminal and the middle domain. To test the effect of dimerization on the ATPase activity of the different constructs, we introduced a Cys residue at the C-terminal ends of the constructs, which allowed covalent dimerization. We show that all monomeric constructs tested exhibit reduced ATPase activity and a decreased affinity for ATP in comparison with wild type Hsp90. The covalently linked dimers lacking only the C-terminal domain hydrolyze ATP as efficiently as the wild type protein. Furthermore, this construct is able to trap the ATP molecule similar to the full-length protein. This demonstrates that in the ATPase cycle, the C-terminal domain can be replaced by a cystine bridge. In contrast, the ATPase activity of the artificially linked N-terminal domains remains very low and bound ATP is not trapped. Taken together, we show that both the dimerization of the N-terminal domains and the association of the N-terminal with the middle domain are important for the efficiency of the ATPase cycle. These reactions are synergistic and require Hsp90 to be in the dimeric state.  相似文献   

5.
The small heat shock proteins Hsp12.2 and alphaB-crystallin differ in that the former occurs as tetramers, without chaperonelike activity, whereas the latter forms multimers and is a good chaperone. To investigate whether the lack of chaperone activity of Hsp12.2 is primarily due to its tetrameric structure or rather to intrinsic sequence features, we engineered chimeric proteins by swapping the N-terminal, C-terminal, and tail regions of Hsp12.2 and alphaB-crystallin, designated as n-c-t and N-C-T, respectively. Three of the chimeric sHsps, namely N-c-T, n-c-T, and N-C-t, showed nativelike secondary and quaternary structures as measured by circular dichroism and gel permeation chromatography. Combining the conserved alpha-crystallin domain of Hsp12.2 with the N-terminal and tail regions of alphaB-crystallin (N-c-T) resulted in multimeric complexes, but did not restore chaperonelike activity. Replacing the tail region of Hsp12.2 with that of alphaB-crystallin (n-c-T) did not alter the tetrameric structure and lack of chaperone activity. Similarly, providing alphaB-crystallin with the tail of Hsp12.2 (N-C-t) did not substantially influence the multimeric complex size, but it reduced the chaperoning ability, especially for small substrates. These results suggest that the conserved alpha-crystallin domain of Hsp12.2 is intrinsically unsuitable to confer chaperonelike activity and confirms that the tail region in alphaB-crystallin modulates chaperonelike capacity in a substrate-dependent manner.  相似文献   

6.
A single nucleotide polymorphism (SNP) that causes a missense mutation of highly conserved Gln488 to His of the α isoform of the 90-kDa heat shock protein (Hsp90α) molecular chaperone is observed in Caucasians. The mutated Hsp90α severely reduced the growth of yeast cells. To investigate this molecular mechanism, we examined the domain–domain interactions of human Hsp90α by using bacterial 2-hybrid system. Hsp90α was expressed as a full-length form, N-terminal domain (residues 1–400), or middle (residues 401–617) plus C-terminal (residues 618–732) domains (MC domain/amino acids 401–732). The Gln488His substitution in MC domain did not affect the intra-molecular interaction with N-terminal domain, whereas the dimeric interaction-mediated by the inter-molecular interaction between MC domains was decreased to 32%. Gln488Ala caused a similar change, whereas Gln488Thr, which exceptionally occurs in mitochondrial Hsp90 paralog, fully maintained the dimeric interaction. Therefore, the SNP causing Gln488His mutation could abrogate the Hsp90 function due to reduced dimerization.  相似文献   

7.
Human small heat shock protein 27 (Hsp27) undergoes concentration-dependent equilibrium dissociation from an ensemble of large oligomers to a dimer. This phenomenon plays a critical role in Hsp27 chaperone activity in vitro enabling high affinity binding to destabilized proteins. In vivo dissociation, which is regulated by phosphorylation, controls Hsp27 role in signaling pathways. In this study, we explore the sequence determinants of Hsp27 dissociation and define the structural basis underlying the increased affinity of Hsp27 dimers to client proteins. A systematic cysteine mutagenesis is carried out to identify residues in the N-terminal domain important for the equilibrium between Hsp27 oligomers and dimers. In addition, spin-labels were attached to the cysteine mutants to enable electron paramagnetic resonance (EPR) analysis of residue environment and solvent accessibility in the context of the large oligomers, upon dissociation to the dimer, and following complex formation with the model substrate T4 Lysozyme (T4L). The mutagenic analysis identifies residues that modulate the equilibrium dissociation in favor of the dimer. EPR analysis reveals that oligomer dissociation disrupts subunit contacts leading to the exposure of Hsp27 N-terminal domain to the aqueous solvent. Moreover, regions of this domain are highly dynamic with no evidence of a packed core. Interaction between T4L and sequences in this domain is inferred from transition of spin-labels to a buried environment in the substrate/Hsp27 complex. Together, the data provide the first structural analysis of sHSP dissociation and support a model of chaperone activity wherein unstructured and highly flexible regions in the N-terminal domain are critical for substrate binding.  相似文献   

8.
Protein kinases are the most prominent group of heat shock protein 90 (Hsp90) clients and are recruited to the molecular chaperone by the kinase-specific cochaperone cell division cycle 37 (Cdc37). The interaction between Hsp90 and nematode Cdc37 is mediated by binding of the Hsp90 middle domain to an N-terminal region of Caenorhabditis elegans Cdc37 (CeCdc37). Here we map the binding site by NMR spectroscopy and define amino acids relevant for the interaction between CeCdc37 and the middle domain of Hsp90. Apart from these distinct Cdc37/Hsp90 interfaces, binding of the B-Raf protein kinase to the cochaperone is conserved between mammals and nematodes. In both cases, the C-terminal part of Cdc37 is relevant for kinase binding, whereas the N-terminal domain displaces the nucleotide from the kinase. This interaction leads to a cooperative formation of the ternary complex of Cdc37 and kinase with Hsp90. For the mitogen-activated protein kinase extracellular signal-regulated kinase 2 (Erk2), we observe that certain features of the interaction with Cdc37·Hsp90 are conserved, but the contribution of Cdc37 domains varies slightly, implying that different kinases may utilize distinct variations of this binding mode to interact with the Hsp90 chaperone machinery.  相似文献   

9.
Nine proteins have been assigned to date to the superfamily of mammalian small heat shock proteins (sHsps): Hsp27 (HspB1, Hsp25), myotonic dystrophy protein kinase-binding protein (MKBP) (HspB2), HspB3, alphaA-crystallin (HspB4), alphaB-crystallin (HspB5), Hsp20 (p20, HspB6), cardiovascular heat shock protein (cvHsp [HspB7]), Hsp22 (HspB8), and HspB9. The most pronounced structural feature of sHsps is the alpha-crystallin domain, a conserved stretch of approximately 80 amino acid residues in the C-terminal half of the molecule. Using the alpha-crystallin domain of human Hsp27 as query in a BLAST search, we found sequence similarity with another mammalian protein, the sperm outer dense fiber protein (ODFP). ODFP occurs exclusively in the axoneme of sperm cells. Multiple alignment of human ODFP with the other human sHsps reveals that the primary structure of ODFP fits into the sequence pattern that is typical for this protein superfamily: alpha-crystallin domain (conserved), N-terminal domain (less conserved), central region (variable), and C-terminal tails (variable). In a phylogenetic analysis of 167 proteins of the sHsp superfamily, using Bayesian inference, mammalian ODFPs form a clade and are nested within previously identified sHsps, some of which have been implicated in cytoskeletal functions. Both the multiple alignment and the phylogeny suggest that ODFP is the 10th member of the superfamily of mammalian sHsps, and we propose to name it HspB10 in analogy with the other sHsps. The C-terminal tail of HspB10 has a remarkable low-complexity structure consisting of 10 repeats of the motif C-X-P. A BLAST search using the C-terminal tail as query revealed similarity with sequence elements in a number of Drosophila male sperm proteins, and mammalian type I keratins and cornifin-alpha. Taken together, the following findings suggest a specialized role of HspB10 in cytoskeleton: (1) the exclusive location in sperm cell tails, (2) the phylogenetic relationship with sHsps implicated in cytoskeletal functions, and (3) the partial similarity with cytoskeletal proteins.  相似文献   

10.
Hsp40s are ubiquitous, conserved proteins which function with molecular chaperones of the Hsp70 class. Sis1 is an essential Hsp40 of the cytosol of Saccharomyces cerevisiae, thought to be required for initiation of translation. We carried out a genetic analysis to determine the regions of Sis1 required to perform its key function(s). A C-terminal truncation of Sis1, removing 231 amino acids but retaining the N-terminal 121 amino acids encompassing the J domain and the glycine-phenylalanine-rich (G-F) region, was able to rescue the inviability of a Deltasis1 strain. The yeast cytosol contains other Hsp40s, including Ydj1. To determine which regions carried the critical determinants of Sis1 function, we constructed chimeric genes containing portions of SIS1 and YDJ1. A chimera containing the J domain of Sis1 and the G-F region of Ydj1 could not rescue the lethality of the Deltasis1 strain. However, a chimera with the J domain of Ydj1 and the G/F region of Sis1 could rescue the strain's lethality, indicating that the G-F region is a unique region required for the essential function of Sis1. However, a J domain is also required, as mutants expected to cause a disruption of the interaction of the J domain with Hsp70 are inviable. We conclude that the G-F region, previously thought only to be a linker or spacer region between the J domain and C-terminal regions of Hsp40s, is a critical determinant of Sis1 function.  相似文献   

11.
McHaourab HS  Lin YL  Spiller BW 《Biochemistry》2012,51(25):5105-5112
How does the sequence of a single small heat shock protein (sHSP) assemble into oligomers of different sizes? To gain insight into the underlying structural mechanism, we determined the crystal structure of an engineered variant of Methanocaldococcus jannaschii Hsp16.5 wherein a 14 amino acid peptide from human heat shock protein 27 (Hsp27) was inserted at the junction of the N-terminal region and the α-crystallin domain. In response to this insertion, the oligomer shell expands from 24 to 48 subunits while maintaining octahedral symmetry. Oligomer rearrangement does not alter the fold of the conserved α-crystallin domain nor does it disturb the interface holding the dimeric building block together. Rather, the flexible C-terminal tail of Hsp16.5 changes its orientation relative to the α-crystallin domain which enables alternative packing of dimers. This change in orientation preserves a peptide-in-groove interaction of the C-terminal tail with an adjacent β-sandwich, thereby holding the assembly together. The interior of the expanded oligomer, where substrates presumably bind, retains its predominantly nonpolar character relative to the outside surface. New large windows in the outer shell provide increased access to these substrate-binding regions, thus accounting for the higher affinity of this variant to substrates. Oligomer polydispersity regulates sHSPs chaperone activity in vitro and has been implicated in their physiological roles. The structural mechanism of Hsp16.5 oligomer flexibility revealed here, which is likely to be highly conserved across the sHSP superfamily, explains the relationship between oligomer expansion observed in disease-linked mutants and changes in chaperone activity.  相似文献   

12.
The molecular chaperone Hsp90 is required for the folding and activation of a large number of substrate proteins. These are involved in essential cellular processes ranging from signal transduction to viral replication. For the activation of its substrates, Hsp90 binds and hydrolyzes ATP, which is the key driving force for conformational conversions within the dimeric chaperone. Dimerization of Hsp90 is mediated by a C-terminal dimerization site. In addition, there is a transient ATP-induced dimerization of the two N-terminal ATP-binding domains. The resulting ring-like structure is thought to be the ATPase-active conformation. Hsp90 is a slow ATPase with a turnover number of 1 ATP/min for the yeast protein. A key question for understanding the molecular mechanism of Hsp90 is how ATP hydrolysis is regulated and linked to conformational changes. In this study, we analyzed the activation process structurally and biochemically with a view to identify the conformational limitations of the ATPase reaction cycle. We showed that the first 24 amino acids stabilize the N-terminal domain in a rigid state. Their removal confers flexibility specifically to the region between amino acids 98 and 120. Most surprisingly, the deletion of this structure results in the complete loss of ATPase activity and in increased N-terminal dimerization. Complementation assays using heterodimeric Hsp90 show that this rigid lid acts as an intrinsic kinetic inhibitor of the Hsp90 ATPase cycle preventing N-terminal dimerization in the ground state. On the other hand, this structure acts, in concert with the 24 N-terminal amino acids of the other N-terminal domain, to form an activated ATPase and thus regulates the turnover number of Hsp90.  相似文献   

13.
New World primates (NWPs) exhibit a compensated form of resistance to gonadal steroid hormones. We demonstrated recently that estrogen resistance in NWP cells was associated with the overexpression of two proteins, a nonreceptor-related, dominant-negative-acting estrogen response element (ERE)-binding protein (ERE-BP) and an intracellular estradiol-binding protein (IEBP). Based on the N-terminal sequences of tryptic fragments of IEBP isolated from a 17beta-estradiol (E2) affinity column we cloned a full-length cDNA for IEBP from the estrogen-resistant NWP cell line, B95-8. Subsequent sequence analysis revealed 87% sequence identity between the deduced peptide for IEBP and human Hsp27. When hormone-responsive, wild-type Old World primate (OWP) cells were transiently transfected with IEBP cDNA, E2-directed ERE reporter luciferase activity was reduced by 50% compared with vector only-transfected OWP cells (p < 0.0018). When IEBP and ERE-BP were cotransfected, ERE promoter-reporter activity was reduced by a further 60% (p < 0.0001). Electrophoresis mobility shift analyses showed that IEBP neither bound to ERE nor competed with the estrogen receptor (ER) for binding to ERE. However, there was evidence of protein-protein interaction of IEBP and ERalpha; IEBP was coimmunoprecipitated with anti-ERalpha antibody in wild-type cells stably transfected with IEBP. A specific interaction between ERalpha and IEBP was confirmed in glutathione S-transferase pull-down and yeast two-hybrid assays. Data indicate that the Hsp27-related IEBP interacts with the ligand binding domain of the ERalpha. In summary, by inhibiting the ERalpha-E2 interaction, IEBP acts to squelch ERalpha-directed ERE-regulated transactivation and promote estrogen resistance in NWP cells.  相似文献   

14.
Hsp70 molecular chaperones contain three distinct structural domains, a 44 kDa N-terminal ATPase domain, a 17 kDa peptide-binding domain, and a 10 kDa C-terminal domain. The ATPase and peptide binding domains are conserved in sequence and are functionally well characterized. The function of the 10 kDa variable C-terminal domain is less well understood. We have characterized the secondary structure and dynamics of the C-terminal domain from the Escherichia coli Hsp70, DnaK, in solution by high-resolution NMR. The domain was shown to be comprised of a rigid structure consisting of four helices and a flexible C-terminal subdomain of approximately 33 amino acids. The mobility of the flexible region is maintained in the context of the full-length protein and does not appear to be modulated by the nucleotide state. The flexibility of this region appears to be a conserved feature of Hsp70 architecture and may have important functional implications. We also developed a method to analyze 15N nuclear spin relaxation data, which allows us to extract amide bond vector directions relative to a unique diffusion axis. The extracted angles and rotational correlation times indicate that the helices form an elongated, bundle-like structure in solution.  相似文献   

15.
The small heat shock proteins (sHsps) from human (Hsp27) and mouse (Hsp25) form large oligomers which can act as molecular chaperones in vitro and protect cells from heat shock and oxidative stress when overexpressed. In addition, mammalian sHsps are rapidly phosphorylated by MAPKAP kinase 2/3 at two or three serine residues in response to various extracellular stresses. Here we analyze the effect of sHsp phosphorylation on its quaternary structure, chaperone function, and protection against oxidative stress. We show that in vitro phosphorylation of recombinant sHsp as well as molecular mimicry of Hsp27 phosphorylation lead to a significant decrease of the oligomeric size. We demonstrate that both phosphorylated sHsps and the triple mutant Hsp27-S15D,S78D,S82D show significantly decreased abilities to act as molecular chaperones suppressing thermal denaturation and facilitating refolding of citrate synthase in vitro. In parallel, Hsp27 and its mutants were analyzed for their ability to confer resistance against oxidative stress when overexpressed in L929 and 13.S.1.24 cells. While wild type Hsp27 confers resistance, the triple mutant S15D,S78D,S82D cannot protect against oxidative stress effectively. These data indicate that large oligomers of sHsps are necessary for chaperone action and resistance against oxidative stress whereas phosphorylation down-regulates these activities by dissociation of sHsp complexes to tetramers.  相似文献   

16.
Small heat shock proteins (sHsps) are a family of large and dynamic oligomers highly expressed in long-lived cells of muscle, lens and brain. Several family members are upregulated during stress, and some are strongly cytoprotective. Their polydispersity has hindered high-resolution structure analyses, particularly for vertebrate sHsps. Here, crystal structures of excised α-crystallin domain from rat Hsp20 and that from human αB-crystallin show that they form homodimers with a shared groove at the interface by extending a β sheet. However, the two dimers differ in the register of their interfaces. The dimers have empty pockets that in large assemblies will likely be filled by hydrophobic sequence motifs from partner chains. In the Hsp20 dimer, the shared groove is partially filled by peptide in polyproline II conformation. Structural homology with other sHsp crystal structures indicates that in full-length chains the groove is likely filled by an N-terminal extension. Inside the groove is a symmetry-related functionally important arginine that is mutated, or its equivalent, in family members in a range of neuromuscular diseases and cataract. Analyses of residues within the groove of the αB-crystallin interface show that it has a high density of positive charges. The disease mutant R120G α-crystallin domain dimer was found to be more stable at acidic pH, suggesting that the mutation affects the normal dynamics of sHsp assembly. The structures provide a starting point for modelling higher assembly by defining the spatial locations of grooves and pockets in a basic dimeric assembly unit. The structures provide a high-resolution view of a candidate functional state of an sHsp that could bind non-native client proteins or specific components from cytoprotective pathways. The empty pockets and groove provide a starting model for designing drugs to inhibit those sHsps that have a negative effect on cancer treatment.  相似文献   

17.
Hsp90 is required for the normal function of steroid receptors, but its binding to steroid receptors is mediated by Hsc70 and several hsp-associated accessory proteins. An assortment of Hsp90 mutants were tested for their abilities to interact with each of the following accessories: Hop, Cyp40, FKBP52, FKBP51, and p23. Of the 11 Hsp90 mutants tested, all were defective to some extent in associating with progestin (PR) complexes. In every case, however, reduced PR binding correlated with a defect in binding of one or more accessories. Co-precipitation of mutant Hsp90 forms with individual accessories was used to map Hsp90 sequences required for accessory protein interactions. Mutation of Hsp90's highly conserved C-terminal EEVD to AAVD resulted in diminished interactions with several accessory proteins, most particularly with Hop. Deletion of amino acids 661–677 resulted in loss of Hsp90 dimerization and also caused diminished interactions with all accessory proteins. Binding of p23 mapped most strongly to the N-terminal ATP-binding domain of Hsp90 while binding of TPR proteins mapped to the C-terminal half of Hsp90. These results and others further suggest that the N- and C-terminal regions of Hsp90 maintain important conformational links through intramolecular interactions and/or intermolecular influences in homodimers.  相似文献   

18.
alphaA-Crystallin, a member of the small heat shock protein (sHsp) family, is a large multimeric protein composed of 30-40 identical subunits. Its quaternary structure is highly dynamic, with subunits capable of freely and rapidly exchanging between oligomers. We report here the development of a fluorescence resonance energy transfer method for measuring structural compatibility between alphaA-crystallin and other proteins. We found that Hsp27 and alphaB-crystallin readily exchanged with fluorescence-labeled alphaA-crystallin, but not with other proteins structurally unrelated to sHsps. Truncation of 19 residues from the N terminus or 10 residues from the C terminus of alphaA-crystallin did not significantly change its subunit organization or exchange rate constant. In contrast, removal of the first 56 or more residues converts alphaA-crystallin into a predominantly small multimeric form consisting of three or four subunits, with a concomitant loss of exchange activity. These findings suggest residues 20-56 are essential for the formation of large oligomers and the exchange of subunits. Similar results were obtained with truncated Hsp27 lacking the first 87 residues. We further showed that the exchange rate is independent of alphaA-crystallin concentration, suggesting subunit dissociation may be the rate-limiting step in the exchange reaction. Our findings reveal a quarternary structure of alphaA-crystallin, consisting of small multimers of alphaA-crystallin subunits in a dynamic equilibrium with the oligomeric complex.  相似文献   

19.
The cytoskeleton has a unique property such that changes of conformation result in polymerization into a filamentous form. alphaB-Crystallin, a small heat shock protein (sHsp), has chaperone activities for various substrates, including proteins constituting the cytoskeleton, such as actin; intermediate filament; and tubulin. However, it is not clear whether the "alpha-crystallin domain" common to sHsps also has chaperone activity for the protein cytoskeleton. To investigate the possibility that the C-terminal alpha-crystallin domain of alpha-crystallin has the aggregation-preventing ability for tubulin, we constructed an N-terminal domain deletion mutant of alphaB-crystallin. We characterized its structural properties and chaperone activities. Far-ultraviolet (UV) circular dichroism measurements showed that secondary structure in the alpha-crystallin domain of the deletion mutant is maintained. Ultracentrifuge analysis of molecular masses indicated that the deletion mutant formed smaller oligomers than did the full-length protein. Chaperone activity assays demonstrated that the N-terminal domain deletion mutant suppressed heat-induced aggregation of tubulin well. Comparison of chaperone activities for 2 other substrates (citrate synthase and alcohol dehydrogenase) showed that it was less effective in the suppression of their aggregation. These results show that alphaB-crystallin recognizes a variety of substrates and especially that alpha-crystallin domain binds free cytoskeletal proteins. We suggest that this feature would be advantageous in its functional role of holding or folding multiple proteins denatured simultaneously under stress conditions.  相似文献   

20.
ParB is one of two P1-encoded proteins that are required for active partition of the P1 prophage in Escherichia coli. To probe the native domain structure of ParB, we performed limited proteolytic digestions of full-length ParB, as well as of several N-terminal and C-terminal deletion fragments of ParB. The C-terminal 140 amino acids of ParB form a very trypsin-resistant domain. In contrast, the N terminus is more susceptible to proteolysis, suggesting that it forms a less stably folded domain or domains. Because native ParB is a dimer in solution, we analyzed the ability of ParB fragments to dimerize, using both the yeast two-hybrid system and in vitro chemical cross-linking of purified proteins. These studies revealed that the C-terminal 59 amino acids of ParB, a region within the protease-resistant domain, are sufficient for dimerization. Cross-linking and yeast two-hybrid experiments also revealed the presence of a second self-association domain within the N-terminal half of ParB. The cross-linking data also suggest that the C terminus is inhibitory to multimerization through the N-terminal domain in vitro. We propose that the two multimerization domains play distinct roles in partition complex formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号