首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Mihara  M Fujimoto 《Life sciences》1989,44(22):1713-1720
Peripheral benzodiazepine (BZ) binding sites were characterized in porcine aortic smooth muscle membrane preparation. [3H]PK11195 bound with high affinity to the membranes (Kd = 8.6 + 0.9 nM), whereas [3H]Ro5-4864 bound slightly to the membranes. The Ki value of Ro5-4864 obtained from the inhibition of [3H]PK 11195 binding was 1200 + 200 nM, which was 480 times weaker than that obtained in rat kidney. Furthermore, the Ro5-4864 effect was temperature-insensitive. When [3H]PK 11195 binding was examined in porcine, human and rat platelets, Ro5-4864 inhibited the binding in porcine and human platelets one order of magnitude less potently than that in rat platelets. These results suggest that low affinity for Ro5-4864 in porcine aorta smooth muscle originates in porcine tissue, but not in smooth muscle.  相似文献   

2.
The presence of benzodiazepine binding sites in rat vas deferens was detected using [3H]Ro 5-4864 as a radioligand. The binding of [3H]Ro 5-4864 to the mitochondrial sites is saturable, reversible, and temperature and time dependent. The association rate constant (k1) was 8.7 +/- 0.7 x 10(7) M-1 min-1, and the dissociation rate constant (k-1) was 0.031 +/- 0.003 min-1. The dissociation constant (KD) determined by saturation binding was 5.22 +/- 0.56 nM. The density of binding was 4,926 +/- 565 fmol/mg of protein. The Hill coefficient of binding was 0.99 +/- 0.01, an indication that [3H]Ro 5-4864 binds to a single site. The [3H]Ro 5-4864 binding was inhibited competitively by Ro 5-4864 and 2-hydroxy-5-nitrobenzyl-6-thioguanosine and noncompetitively by PK 11195, nitrendipine, alpha,beta-methylene-ATP, and carboxyatractyloside and was not affected by clonazepam, dicyclohexylcarbodiimide, or protoporphyrin IX. Our data indicate that [3H]Ro 5-4864 binding sites are not identical to those labeled by PK 11195. These binding sites are modulated by the ADP/ATP mitochondrial carrier, and an interaction of dihydropyridines and [3H]Ro 5-4864 binding sites in rat vas deferens is suggested.  相似文献   

3.
The binding of [3H]Ro 5-4864, a specific ligand for "peripheral-type" benzodiazepine binding sites and [3H]Ro 15-1788, a specific ligand for the central benzodiazepine receptors, was determined in subcellular fractions of rat brain. As previously reported, the highest levels of "peripheral-type" benzodiazepine binding sites and benzodiazepine receptors were found in the crude P1 and P2 fractions, respectively. Purification of these crude fractions revealed that high levels of both [3H]Ro 5-4864 and [3H]Ro 15-1788 binding were present in the mitochondrial and synaptosomal fractions. In contrast, the purified nuclei and myelin contained low levels of both [3H]Ro 5-4864 and [3H]Ro 15-1788 binding.  相似文献   

4.
Binding of [3H]Ro5-4864, a peripheral benzodiazepine receptor (PBR) agonist, to BT-20 human, estrogen- (ER) and progesterone- (PR) receptor negative breast cancer cells was characterized. It was found to be specific, dose-dependent and saturable with a single population of binding sites. Dissociation constant (K(D)) was 8.5 nM, maximal binding capacity (Bmax) 339 fM/10(6) cells. Ro5-4864 (IC50 17.3 nM) and PK 11195 (IC50 12.3 nM) were able to compete with [3H]Ro5-4864 for binding, indicating specificity of interaction with PBR. Diazepam was able to displace [3H]Ro5-4864 from binding only at high concentrations (>1 microM), while ODN did not compete for PBR binding. Thymidine-uptake assay showed a biphasic response of cell proliferation. While low concentrations (100 nM) of Ro5-4864, PK 11195 and diazepam increased cell growth by 10 to 20%, higher concentrations (10-100 microM) significantly inhibited cell proliferation. PK 11195, a potent PBR ligand, was able to attenuate growth of BT-20 cells stimulated by 100 nM Ro5-4864 and to reverse growth reduction caused by 1 and 10 microM Ro5-4864, but not by 50 microM and 100 microM. This indicates that the antimitotic activity of higher concentrations of Ro5-4864 is independent of PBR binding. It is suggested, that PBR are involved in growth regulation of certain human breast cancer cell lines, possibly by supplying proliferating cells with energy, as their endogenous ligand is a polypeptide transporting Acyl-CoA.  相似文献   

5.
1. The effect of the benzodiazepines Ro5-4864, AHN 086 and clonazepam on the release of Ca2+ from rat heart and kidney mitochondria was studied. 2. The peripheral-type benzodiazepines Ro5-4864 and AHN 086 induced Ca2+ release which was blocked by Mg2+ whereas the central-type benzodiazepine clonazepam was ineffective. 3. An associated collapse of membrane potential and swelling were also induced by AHN 086 in the presence of Ca2+. 4. However, no oxidation of pyridine nucleotides or increased rate or respiration were observed. 5. Release of Sr2+ was induced by AHN 086 in the absence of inorganic phosphate but not in its presence. 6. These data are discussed in the context of the current hypotheses on the mechanism of mitochondrial Ca2+ release.  相似文献   

6.
The actions of 2,6-dimethyl-3,5-dicarbomethoxy-4-(2-isothiocyano)phenyl-1,4- dihydropyridine (o-NCS-DHP), a nifedipine analog bearing a reactive group, have been characterized in vitro by pharmacological and radioligand binding techniques in a number of smooth muscles and in vivo by blood pressure and radioligand binding. o-NCS-DHP exhibits persistent, but slowly reversible, antagonism in guinea pig ileal longitudinal smooth muscle, guinea pig bladder, taenia coli, rat portal vein, and rat tail artery to receptor responses (muscarinic and alpha-adrenoceptor) and K+ depolarization initiated responses. Duration of response was significantly longer than that of equivalent concentrations of nifedipine. In many tissues a component of antagonism produced by o-NCS-DHP was not reversed by repeated washing over the duration of the experiment (up to 2 or 7 h). A comparison of the actions of o-NCS-DHP and its isomers m-NCS-DHP and p-NCS-DHP revealed the former to be significantly longer lasting in rat tail artery against K+ depolarization induced responses. A similar profile was exhibited when the Ca2+ channel activator Bay K 8644 was employed as the stimulant, but the antagonism produced by all three compounds was fully reversed with sufficiently prolonged washing. In vivo administration of o-NCS-DHP (5-25 mg/kg) produced a persistent reduction of [3H]nitrendipine binding in rat brain, gut, and heart characterized as Bmax, but not KD, changes. No effects on [3H]dihydroalprenolol or [3H]quinuclidinyl benzilate binding were detected. Binding site recoveries were characterized by t1/2 values of 35-50 h, and these were significantly prolonged to 91-107 h in animals treated with cycloheximide. Recovery of [3H]nitrendipine binding sites correlated with blood pressure restoration in spontaneously hypertensive rats. These data suggest that o-NCS-DHP possesses both reversible and irreversible actions. The reversible actions are unusually persistent compared with nifedipine and other 1,4-dihydropyridine analogs. This persistent, but reversible component, may be accompanied by an irreversible action particularly at the higher concentrations employed in the in vivo experiments.  相似文献   

7.
The characteristics of [3H]Ro 5-4864 binding to "peripheral" benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of [3H]Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50%, respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of [3H]Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the Bmax of [3H]Ro 5-4864 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for [3H]Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion.  相似文献   

8.
K+-stimulated 45Ca2+ uptake into rat brain and guinea pig cerebral cortex synaptosomes was measured at 10 s and 90 s at K+ concentrations of 5-75 mM. Net increases in 45Ca2+ uptake were observed in rat and guinea pig brain synaptosomes. 45Ca2+ uptake under resting or depolarizing conditions was not increased by the 1,4-dihydropyridine BAY K 8644, which has been shown to activate Ca2+ channels in smooth and cardiac muscle. High-affinity [3H]nitrendipine binding in guinea pig synaptosomes (KD = 1.2 X 10(-10) M, Bmax = 0.56 pmol mg-1 protein) was competitively displaced with high affinity (IC50 2.3 X 10(-9) M) by BAY K 8644. Thus high-affinity Ca2+ channel antagonist and activator binding sites exist in synaptosome preparations, but their relationship to functional Ca2+ channels is not clear.  相似文献   

9.
The binding properties (3H) BAY k 8644 a 1,4-dihydropyridine calcium channel agonist were studied in the subcellular membrane fraction isolated from the coronary artery by differential centrifugation. The specific binding of (3H) BAY k 8644 to microsomal membranes of the coronary smooth muscle was rapid, saturable, reversible and of both high and low affinity. The dissociation constants obtained from Scatchard analysis with (3H) BAY k 8644 and nitrendipine were 0.60 +/- 0.02 nmol.l-1 and 9.1 +/- 0.1 nmol.l-1 for the high and low affinity binding site respectively and the estimated maximal numbers of binding sites in the plasma membrane fraction were 0.76 +/- 0.02 and 3.15 +/- 0.18 pmol.mg-1 of protein respectively. The substituted dihydropyridine calcium channel antagonists nitrendipine and nifedipine competitively inhibited specific (3H)BAY k 8644 binding suggesting a common high affinity 1,4-dihydropyridine binding site in the coronary microsomal fraction for calcium channel activator and antagonists. The low affinity agonist binding sites were significantly inhibited by adding nucleoside carrier inhibitors, 2-deoxyadenosine and dipyridamole, and by -SH alkylating agent N-ethylmaleimide. The results suggests that the coronary artery contains both high and low affinity calcium channel binding sites (in a 1:5 ratio) with the low affinity calcium channel agonist binding sites being associated with nucleoside carrier and/or with-SH groups.  相似文献   

10.
The in vitro and in vivo regulation of [3H]Ro 5-4864 binding to peripheral benzodiazepine receptors (PBR) by ion transport/exchange inhibitors was studied in the kidney. The potencies of 9-anthroic acid, furosemide, bumetanide, hydrochlorothiazide and SITS as inhibitors of [3H]Ro 5-4864 binding to renal membranes were consistent with their actions as anion transport inhibitors (Ki approximately equal to 30 - 130 microM). In contrast, spironolactone, amiloride, acetazolamide, and ouabain were less potent (Ki = 100-1000 microM). Administration of furosemide to rats for five days resulted in a profound diuresis (approximately equal to 350% increase in urine volume) accompanied by a significant increase in PBR density (43%) that was apparent by the fifth day of treatment. Administration of hydrochlorothiazide or Ro 5-4864 for five days also caused diuresis and increased renal PBR density. Both the diuresis and increased density of PBR produced by Ro 5-4864 were blocked by coadministration of PK 11195, which alone had no effect on either PBR density or urine volume. The equilibrium binding constants of [3H]Ro 5-4864 to cardiac membranes were unaffected by administration of any of these drugs. These findings suggest that renal PBR may be selectively modulated in vivo and in vitro by administration of ion transport/exchange inhibitors.  相似文献   

11.
M Awad  M Gavish 《Life sciences》1988,43(2):167-175
The present study demonstrates a differential effect of various detergent treatments on [3H]Ro 5-4864 and [3H]PK 11195 binding to peripheral benzodiazepine binding sites (PBS). Triton X-100 (0.0125%) caused a decrease of about 70% in [3H]Ro 5-4864 binding to membranes from various peripheral tissues of rat, but had only a negligible effect on [3H]PK 11195 binding. A similar effect of Triton X-100 was observed on guinea pig and rabbit kidney membranes. The decrease in [3H]Ro 5-4864 binding after treatment with Triton X-100 was apparently due to a decrease in the density of PBS, since the affinity remained unaltered. The detergents 3-[(3-cholamidopropyl)-dimethylammonio]-1-propane sulfonate (CHAPS), Tween 20, deoxycholic acid, or digitonin (0.0125%) caused only a minor change in [3H]Ro 5-4864 and [3H]PK 11195 binding to rat kidney membranes; but when concentrations were substantially increased (0.1%), all detergents caused a decrease of at least 50% in [3H]Ro 5-4864 binding, while [3H]PK 11195 binding to rat kidney membranes remained unaffected by the first three detergents, with only a minor decrease (15%) after treatment with digitonin. These results may further support the assumption that Ro 5-4864 and PK 11195 are agonist and antagonist, respectively, of PBS and interact with two different conformations or domains in the peripheral-type benzodiazepine binding site molecule.  相似文献   

12.
BAY k 8644 is a member of a new class of drugs that directly activates Ca2+ channels. This 1,4-dihydropyridine was found to bind to both high and low affinity sites on rabbit ventricular microsomes and guinea pig brain synaptosomes. The dissociation constant obtained from Scatchard analysis with [3H]BAY k 8644 was 2 to 3 nM for the high affinity binding site, and the estimated maximal number of binding sites was 0.8 and 0.4 pmol/mg protein for heart and brain membranes, respectively, at 15 degrees C. Competition between nitrendipine and [3H]BAY k 8644 indicated a common high affinity binding site for Ca2+ channel activators and antagonists. The results suggest that the 1,4-dihydropyridine Ca2+ channel antagonists do not act as simple channel plugs.  相似文献   

13.
The effects of the peripheral-type benzodiapine receptor (PBR) ligands Ro 5-4864 and PK 11195 were studied in the spontaneously beating guinea pig atrium and in a model for myocardial ischemia in the rat. In the former, Bay K 8644 produced positive chronotropic and inotropic responses; intracarotid administration of this agonist (5 or 10 micrograms kg-1) to anesthetized rats elicited a transient increase in mean arterial blood pressure accompanied by alterations in the ECG pattern. Ro 5-4864 and PK 11195 (10 microM) completely blocked the positive chronotropic effect of Bay K 8644 in the atrium, PK 11209, a structural analog of PK 11195 with a low affinity for PBR, was inactive, and the central benzodiazepine receptor ligand clonazepam had a marginal effect. Ro 5-4864 potentiated whereas PK 11195 inhibited the myocardial ischemia produced by Bay K 8644 in the rat. Furthermore, PK 11195 blocked the combined response to Bay K 8644 and Ro 5-4864. Addition of Ro 5-4864 (10 microM) to the organ bath potentiated the inotropic effect of Bay K 8644 in the atria; PK 11195 at the same concentration inhibited this effect. Clonazepam and PK 11209 were both inactive in this regard. Nifedipine, a potent calcium channel antagonist, completely blocked the inotropic and chronotropic responses to Bay K 8644. PK 11195 and Ro 5-4864 did not affect this action. These findings strongly suggest that there is a functional association between PBR and voltage-operated calcium channels in the guinea pig atrium and rat cardiovascular system.  相似文献   

14.
The density of high affinity binding sites for [3H]4'-chlorodiazepam [( 3H]Ro 5-4864) in guinea pig cerebral cortex is significantly higher (3.8-fold) than the density reported in the rat, and is nearly equal to the density of binding sites for other [3H]benzodiazepines (e.g., diazepam, flunitrazepam). The density of these [3H]Ro 5-4864 binding sites was generally higher in guinea pig brain than in rat brain, with the exception of olfactory bulb. Both the subcellular distribution and pharmacologic profile of these sites in guinea pig brain appears qualitatively similar to observations previously reported in the rat. The high density of binding sites for [3H]Ro 5-4864, coupled with the potency of this compound as a convulsant in the guinea pig, suggest this species will be a valuable model for elucidating putative pharmacologic and physiologic functions of these sites in brain.  相似文献   

15.
[3H]Diazepam and [3H] Ro5 -4864 were used as ligands to identify and characterize peripheral-type benzodiazepine binding sites in mouse and rat brown adipose tissue (BAT) membranes. [3H]Diazepam and [3H] Ro5 -4864 binding sites in BAT are pharmacologically similar to peripheral-type benzodiazepine binding sites in other tissues. Stimulators of central-type benzodiazepine receptors had no effect on or inhibited ligand binding to BAT membranes. Brown adipose tissue benzodiazepine binding sites are highly localized to mitochondria-containing subcellular fractions. These binding sites decrease with age in BAT from Fischer 344 rats. Stimulation of BAT thermogenesis in mice with 1-norepinephrine led to a decrease in [3H] Ro5 -4864 binding in the tissue.  相似文献   

16.
M Awad  M Gavish 《Life sciences》1991,49(16):1155-1161
The specific binding of [3H]PK 11195 and [3H]Ro 5-4864 to human cerebral cortex, kidney, and colon membranes was studied in order to determine whether peripheral type benzodiazepine receptors (PBR) characteristics located in human tissues are similar to those located in calf or rat tissues. While [3H]PK 11195 (0.05-10 nM, final concentration) bound with high affinity (KD about 2 nM) to human cerebral cortex, kidney, and colon membranes, yielding maximal numbers of binding sites of 255 +/- 23, 1908 +/- 28, and 1633 +/- 98 fmol/mg protein, respectively, the specific binding of [3H]Ro 5-4864 (1.25-40 nM, final concentration), was barely detectable (nonspecific binding about 90% of the total binding). Furthermore, unlabeled PK 11195 was two orders of magnitude more potent than unlabeled Ro 5-4864 in displacing [3H]PK 11195 specific binding from human cerebral cortex and kidney membranes. These results indicate that PBR binding characteristics located in human tissues are similar (but not identical) to those located in calf tissues, but not to those located in rat tissues.  相似文献   

17.
The effects of the three dihydropyridine calcium channel agonists (+/-)BAY K 8644, (+)202-791 and (+/-)CGP 28392 on 45Ca++ uptake were studied in cultures of rabbit aortic smooth muscle cells. At 10(-7) M each agonist enhanced 45Ca++ uptake in 15-50 mM K+ but had no effect on the basal 45Ca++ uptake at 5 mM K+. At the uptake threshold of 15 mM K+ each agonist potentiated 45Ca++ uptake in a dose-dependent manner with half maximal effects at 2.4 nM for (+/-)BAY K 8644, 22 nM for (+)202-791 and 18 nM for (+/-)CGP 28392. The agonists showed no significant antagonistic activity. Responses were antagonized competitively by nifedipine and non-competitively by (+/-)D-600. The 45Ca++ uptake dose-response curves and the half maximal effects of the three agonists were over the same range of concentrations as their inhibition of [3H]nitrendipine binding to rat ventricular receptor membrane preparations. The data suggest that these cells mimic the calcium uptake by the intact aorta better than commercial vascular smooth muscle lines or cardiac cells.  相似文献   

18.
Binding of [3H]nitrendipine, [3H]nimodipine, and (+)[3H]PN 200-110 to microsomal preparations of guinea pig smooth and cardiac muscle and brain synaptosomes revealed high affinity interaction with KD values in the sequence, (+)PN 200-110 greater than nitrendipine greater than nimodipine. Bmax values for a particular tissue were independent of the 1,4-dihydropyridine employed in radioligand binding at 25 degrees C. The temperature dependence of [3H]nitrendipine binding in cardiac and smooth muscle microsomal preparations and brain synaptosomes was measured from 0 degrees to 37 degrees C and for skeletal muscle preparations from 0 degrees to 30 degrees C. Bmax values increased with temperature for cardiac membranes, but did not vary in other tissues. van't Hoff plots were nonlinear in all tissues, enthalpy and entropy changes becoming increasingly negative with increasing temperature. Competition binding of the activator-antagonist enantiomeric 1,4-dihydropyridine pairs of Bay k 8644 and PN 202-791 for [3H]nitrendipine in smooth muscle did not reveal significant thermodynamic differences between activator and antagonist molecules.  相似文献   

19.
Hormonal interactions with benzodiazepine binding sites in vitro   总被引:1,自引:0,他引:1  
Prostaglandin A1 and hormones like corticosteroids and DL-Thyroxin (T4) inhibit binding of [3H]RO 5-4864 and [3H] Clonazepam to their respective binding sites with inhibition constants in the low micromolar range. The corticosteroid Cortisone inhibits [3H] RO 5-4864, but not [3H] Clonazepam binding in a competitive manner with an inhibition constant of 4.3 +/- 0.7 microM, Prostaglandin A1 inhibits [3H] Clonazepam, but not [3H] RO 5-4864 binding in a competitive manner with an inhibition constant of 6 +/- 1.2 microM and DL-Thyroxin (T4) inhibits both [3H] RO 5-4864 and [3H] Clonazepam binding with inhibition constants of 12.1 +/- 2.2 and 1.6 +/- 0.4 microM respectively. While the inhibition of [3H] RO 5-4864 binding by DL-Thyroxin (T4) is competitive, the inhibition of [3H] Clonazepam binding is of the mixed type as indicated by Scatchard Plot.  相似文献   

20.
Previous studies have shown that Ro 5-4864 is a potent convulsant and increases the firing rate of substantia nigra zona reticulata neurons. The pharmacologic profile of compounds that antagonize these actions suggested that the effects of Ro 5-4864 were not mediated by "brain-type" benzodiazepine receptors. We examined a number of compounds that are structurally related to Ro 5-4864 for their capacities to displace [3H]Ro 5-4864 from "peripheral-type" binding sites and their potencies as convulsants (or as antagonists of Ro 5-4864-induced convulsions). It was observed that compounds such as KW 3600 (the N-desmethyl analog of Ro 5-4864), which have very low affinities for "peripheral-type" sites, are convulsants with a potency nearly equal to that of Ro 5-4864. In contrast, compounds such as Ro 5-6900 and PK 11195, which bind with very high affinities to "peripheral-type" binding sites, are neither convulsants nor do they antagonize the convulsant actions of Ro 5-4864. Within a series of compounds that are structurally related to Ro 5-4864 there is a good correlation (r = 0.93; p less than 0.01) between their potencies as convulsants and their capacities to displace [35S]t-butylbicyclophosphorothionate from sites that may be associated with the chloride ionophore. Thus, it appears that occupation of "peripheral-type" binding sites by high-affinity ligands may not be directly involved in the convulsant actions of Ro 5-4864 and related compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号