首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The DNA binding proteins ArgR and AhrC are essential for regulation of arginine metabolism in Escherichia coli and Bacillus subtilis, respectively. A unique property of these regulators is that they form hexameric protein complexes, mediating repression of arginine biosynthetic pathways as well as activation of arginine catabolic pathways. The gltS-argE operon of Lactococcus lactis encodes a putative glutamate or arginine transport protein and acetylornithine deacetylase, which catalyzes an important step in the arginine biosynthesis pathway. By random integration knockout screening we found that derepression mutants had ISS1 integrations in, among others, argR and ahrC. Single as well as double regulator deletion mutants were constructed from Lactococcus lactis subsp. cremoris MG1363. The three arginine biosynthetic operons argCJDBF, argGH, and gltS-argE were shown to be repressed by the products of argR and ahrC. Furthermore, the arginine catabolic arcABD1C1C2TD2 operon was activated by the product of ahrC but not by that of argR. Expression from the promoter of the argCJDBF operon reached similar levels in the single mutants and in the double mutant, suggesting that the regulators are interdependent and not able to complement each other. At the same time they also appear to have different functions, as only AhrC is involved in activation of arginine catabolism. This is the first study where two homologous arginine regulators are shown to be involved in arginine regulation in a prokaryote, representing an unusual mechanism of regulation.  相似文献   

3.
We report the cloning of the arginine repressor gene from the psychropiezophilic Gram-negative bacterium Moritella profunda, the purification of its product (ArgR(Mp)), the identification of the operator in the bipolar argECBFGH(A) operon, in vivo repressibility studies, and an in vitro analysis of the repressor-operator interaction, including binding to mutant and heterologous arginine operators. The ArgR(Mp) subunit shows about 70% amino acid sequence identity with Escherichia coli ArgR (ArgR(Ec)). Binding of purified hexameric ArgR(Mp) to the control region of the divergent operon proved to be arginine-dependent, sequence-specific, and significantly more sensitive to heat than complex formation with ArgR(Ec). ArgR(Mp) binds E.coli arginine operators very efficiently, but hardly recognizes the operator from Bacillus stearothermophilus or Thermotoga maritima. ArgR(Mp) binds to a single site overlapping the -35 element of argC(P), but not argE(P). Therefore, the arrangement of promoter and operator sites in the bipolar argECBFGH(A) operon of M.profunda is very different from the organization of control elements in the bipolar argECBH operon of E.coli, where both promoters overlap the common operator and are equally repressible. We demonstrate that M.profunda argC(P) is about 44-fold repressible, whereas argE(P) is fully constitutive. A high-resolution contact map of the ArgR(Mp)-operator interaction was established by enzymatic and chemical footprinting, missing contact and base-specific premodification binding interference studies. The results indicate that the argC operator consists of two ARG box-like sequences (18bp imperfect palindromes) separated by 3bp. ArgR(Mp) binds to one face of the DNA helix and establishes contacts with two major groove segments and the intervening minor groove of each ARG box, whereas the minor groove segment facing the repressor at the center of the operator remains largely uncontacted. This pattern is reminiscent of complex formation with the repressors of E.coli and B.stearothermophilus, and suggests that each ARG box is contacted by two ArgR subunits belonging to opposite trimers. Moreover, the premodification interference patterns and mutant studies clearly indicate that the inner, center proximal halves of each ARG box in the M.profunda argC operator are more important for complex formation and repression than the outermost halves. A close inspection of sequence conservation and of single base-pair O(c)-type mutations indicate that the same conclusion can be generalized to E.coli operators.  相似文献   

4.
The Escherichia coli arginine repressor (ArgR) controls expression of the arginine biosynthetic genes and acts as an accessory protein in Xer site-specific recombination at cer and related plasmid recombination sites. The hexameric wild-type protein shows L -arginine-dependent DNA binding. In this work, ArgR mutants that are defective in trimer–trimer interactions and bind DNA as trimers in an L -arginine-independent manner are isolated and characterized. Whereas the wild-type ArgR hexamer exhibits high-affinity binding to two repeated ARG boxes separated by 3 bp (each ARG box containing two identical dyad symmetrical 9 bp half-sites), the trimeric mutants bind to and footprint three adjacent half-sites of this 'idealized' substrate. Trimeric ArgR is impaired in its ability to repress the arginine biosynthetic genes and in Xer site-specific recombination. In the absence of L -arginine, residual wild-type ArgR-binding occurs as trimers. The binding of an N-terminal 77-amino-acid DNA-binding domain to idealized ARG boxes is also characterized.  相似文献   

5.
6.
7.
8.
9.
10.
S M Park  C D Lu    A T Abdelal 《Journal of bacteriology》1997,179(17):5309-5317
Pseudomonas aeruginosa ArgR, a regulatory protein that plays a major role in the control of certain biosynthetic and catabolic arginine genes, was purified to homogeneity. ArgR was shown to be a dimer of two equal subunits, each with a molecular mass of 37,000 Da. Determination of the amino-terminal amino acid sequence showed it to be identical to that predicted from the derived sequence for the argR gene. DNase I footprinting showed that ArgR protects a region of 45 to 47 bp that overlaps the promoters for the biosynthetic car and argF operons, indicating that ArgR exerts its negative control on the expression of these operons by steric hindrance. Studies were also carried out with the aru operon, which encodes enzymes of the catabolic arginine succinyl-transferase pathway. Quantitative S1 nuclease experiments showed that expression of the first gene in this operon, aruC, is initiated from an arginine-inducible promoter. Studies with an aruC::lacZ fusion showed that this promoter is under the control of ArgR. DNase I experiments indicated that ArgR protects two 45-bp binding sites upstream of aruC; the 3' terminus for the downstream binding site overlaps the -35 region for the identified promoter. Gel retardation experiments yielded apparent dissociation constants of 2.5 x 10(-11), 4.2 x 10(-12), and 7.2 x 10(-11) M for carA, argF, and aruC operators, respectively. Premethylation interference and depurination experiments with the car and argF operators identified a common sequence, 5'-TGTCGC-3', which may be important for ArgR binding. Alignment of ArgR binding sites reveals that the ArgR binding site consists of two half-sites, in a direct repeat arrangement, with the consensus sequence TGTCGCN8AAN5.  相似文献   

11.
12.
13.
The degree of sequence conservation of arginine repressor proteins (ArgR) and of the cognate operators (tandem pairs of 18 bp imperfect palindromes, ARG boxes) in evolutionarily distant bacteria is unusually high, and the global mechanism of ArgR-mediated regulation appears to be similar. However, here we demonstrate that the arginine repressor from the hyperthermophilic bacterium Thermotoga neapolitana (ArgR(Tn)) exhibits characteristics that clearly distinguish this regulator from the well-studied homologues from Escherichia coli, Bacillus subtilis and B.stearothermophilus. A high-resolution contact map of ArgR(Tn) binding to the operator of the biosynthetic argGHCJBD operon of Thermotoga maritima indicates that ArgR(Tn) establishes all of its strong contacts with a single ARG box-like sequence of the operator only. Protein array and electrophoretic mobility-shift data demonstrate that ArgR(Tn) has a remarkable capacity to bind to arginine operators from Gram-negative and Gram-positive bacteria, and to single ARG box-bearing targets. Moreover, the overall effect of L-arginine on the apparent K(d) of ArgR(Tn) binding to various cognate and heterologous operator fragments was minor with respect to that observed with diverse bacterial arginine repressors. We demonstrate that this unusual behaviour for an ArgR protein can, to a large extent, be ascribed to the presence of a serine residue at position 107 of ArgR(Tn), instead of the highly conserved glutamine that is involved in arginine binding in the E.coli repressor. Consistent with these results, ArR(Tn) was found to behave as a superrepressor in E.coli, inhibiting growth in minimal medium, even supplemented with arginine, whereas similar constructs bearing the S107Q mutant allele did not inhibit growth. We assume that ArgR(Tn), owing to its broad target specificity and its ability to bind single ARG box sequences, might play a more general regulatory role in Thermotoga  相似文献   

14.
The argR gene of Streptomyces clavuligerus has been located in the upstream region of argG . It encodes a protein of 160 amino acids with a deduced M r of 17 117 for the monomer. Transformants containing the amplified argR gene showed lower activity (50%) of the biosynthetic ornithine carbamoyltransferase (OTC) activity and higher levels (380%) of the catabolic ornithine aminotransferase (OAT) activity than control strains. Amplification of an arginine (ARG) box-containing sequence results in a 2- to 2.5-fold derepression of ornithine acetyltransferase and OTC, suggesting that the repressor is titrated out. Footprinting experiments using the pure homologous arginine repressor (AhrC) of B. subtilis showed a protected 38 nt region (ARG box) in the coding strand upstream of argC . The protected region contained two tandemly repeated imperfect palindromic 18-nt ARG boxes. The repressor–operator interaction was confirmed by band-shift experiments of the DNA fragment containing the protected region. By computer analysis of the Streptomyces sequences available in the databases, a consensus ARG box has been deduced for the genus Streptomyces . This is the first example of a clear regulation of an amino acid biosynthetic pathway in Streptomyces species, challenging the belief that actinomycetes do not have a well-developed regulatory system of these pathways.  相似文献   

15.
We report here the cloning of the arginine repressor gene argR of Bacillus stearothermophilus and the characterization and purification to homogeneity of its product. The deduced amino acid sequence of the 16.8-kDa ArgR subunit shares 72% identity with its mesophilic homologue AhrC of Bacilus subtilis . Sequence analysis of B. stearothermophilus ArgR and comparisons with mesophilic arginine repressors suggest that the thermostable repressor comprises an N-terminal DNA-binding and a C-terminal oligomerization and arginine-binding region. B. stearothermophilus ArgR has been overexpressed in E. coli and purified as a 48.0-kDa trimeric protein. The repressor inhibits the expression of a B. stearothermophilus argC–lacZ fusion in E. coli cells. In the presence of arginine, the purified protein binds tightly and specifically to the argC operator, which largely overlaps the argC promoter. The purified B. stearothermophilus repressor proved to be very thermostable with a half-life of approximately 30 min at 90°C, whereas B. subtilis AhrC was largely inactivated at 65°C. Moreover, ArgR operator complexes were found to be remarkably thermostable and could be formed efficiently at up to 85°C, well above the optimal growth temperature of the moderate thermophile B. stearothermophilus . This pronounced resistance of the repressor–operator complexes to heat treatment suggests that the same type of regulatory mechanism could operate in extreme thermophiles.  相似文献   

16.
17.
The repression of the carAB operon encoding carbamoyl phosphate synthase leads to Lactobacillus plantarum FB331 growth inhibition in the presence of arginine. This phenotype was used in a positive screening to select spontaneous mutants deregulated in the arginine biosynthesis pathway. Fourteen mutants were genetically characterized for constitutive arginine production. Mutations were located either in one of the arginine repressor genes (argR1 or argR2) present in L. plantarum or in a putative ARG operator in the intergenic region of the bipolar carAB-argCJBDF operons involved in arginine biosynthesis. Although the presence of two ArgR regulators is commonly found in gram-positive bacteria, only single arginine repressors have so far been well studied in Escherichia coli or Bacillus subtilis. In L. plantarum, arginine repression was abolished when ArgR1 or ArgR2 was mutated in the DNA binding domain, or in the oligomerization domain or when an A123D mutation occurred in ArgR1. A123, equivalent to the conserved residue A124 in E. coli ArgR involved in arginine binding, was different in the wild-type ArgR2. Thus, corepressor binding sites may be different in ArgR1 and ArgR2, which have only 35% identical residues. Other mutants harbored wild-type argR genes, and 20 mutants have lost their ability to grow in normal air without carbon dioxide enrichment; this revealed a link between arginine biosynthesis and a still-unknown CO2-dependent metabolic pathway. In many gram-positive bacteria, the expression and interaction of different ArgR-like proteins may imply a complex regulatory network in response to environmental stimuli.  相似文献   

18.
The arginine repressor (ArgR) from Mycobacterium tuberculosis (Mtb) is a gene product encoded by the open reading frame Rv1657. It regulates the l-arginine concentration in cells by interacting with ARG boxes in the promoter regions of the arginine biosynthesis and catabolism operons. Here we present a 2.5-Å structure of MtbArgR in complex with a 16-bp DNA operator in the absence of arginine. A biological trimer of the protein-DNA complex is formed via the crystallographic 3-fold symmetry axis. The N-terminal domain of MtbArgR has a winged helix-turn-helix motif that binds to the major groove of the DNA. This structure shows that, in the absence of arginine, the ArgR trimer can bind three ARG box half-sites. It also reveals the structure of the whole MtbArgR molecule itself containing both N-terminal and C-terminal domains.  相似文献   

19.
The arginine regulatory protein of Pseudomonas aeruginosa, ArgR, is essential for induction of operons that encode enzymes of the arginine succinyltransferase (AST) pathway, which is the primary route for arginine utilization by this organism under aerobic conditions. ArgR also induces the operon that encodes a catabolic NAD(+)-dependent glutamate dehydrogenase (GDH), which converts l-glutamate, the product of the AST pathway, in alpha-ketoglutarate. The studies reported here show that ArgR also participates in the regulation of other enzymes of glutamate metabolism. Exogenous arginine repressed the specific activities of glutamate synthase (GltBD) and anabolic NADP-dependent GDH (GdhA) in cell extracts of strain PAO1, and this repression was abolished in an argR mutant. The promoter regions of the gltBD operon, which encodes GltBD, and the gdhA gene, which encodes GdhA, were identified by primer extension experiments. Measurements of beta-galactosidase expression from gltB::lacZ and gdhA::lacZ translational fusions confirmed the role of ArgR in mediating arginine repression. Gel retardation assays demonstrated the binding of homogeneous ArgR to DNA fragments carrying the regulatory regions for the gltBD and gdhA genes. DNase I footprinting experiments showed that ArgR protects DNA sequences in the control regions for these genes that are homologous to the consensus sequence of the ArgR binding site. In silica analysis of genomic information for P. fluorescens, P. putida, and P. stutzeri suggests that the findings reported here regarding ArgR regulation of operons that encode enzymes of glutamate biosynthesis in P. aeruginosa likely apply to other pseudomonads.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号