首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis induction by gamma-tocotrienol in human hepatoma Hep3B cells   总被引:1,自引:0,他引:1  
We evaluated the antitumor activity of tocotrienol (T3) on human hepatoma Hep3B cells. At first, we examined the effect of T3 on the proliferation of human hepatoma Hep3B cells and found that gamma-T3 inhibited cell proliferation at lower concentrations and shorter treatment times than alpha-T3. Then, we examined the effect of gamma-T3 apoptosis induction and found that gamma-T3 induced poly (ADP-ribose) polymerase (PARP) cleavage and stimulated a rise in caspase-3 activity. In addition, gamma-T3 stimulated a rise in caspase-8 and caspase-9 activities. We also found that gamma-T3-induced apoptotic cell death was accompanied by up-regulation of Bax and a rise in the fragments of Bid and caspase-8. These data indicate that gamma-T3 induced apoptosis in Hep3B cells and that caspase-8 and caspase-9 were involved in apoptosis induction. Moreover, these results suggest that Bax and Bid regulated apoptosis induction by gamma-T3.  相似文献   

2.
Chae HJ  Yang SK  Kim DS  Kim HM  Chae SW  Keum KS  Kim HR 《Life sciences》2004,75(25):2997-3016
Ge-Jee-Bok-Ryung-Hwan (GJBRH), a commonly used herb formulation in Korea, Japan and China, caused a decrease of viability in HeLa human cervical carcinoma cells. The treatment of GJBRH resulted in genomic DNA fragmentation as well as the increase of Sub-G1 portion in cell cycle analysis. In this study, GFP-Bax over-expression system showed that Bax, pro-apoptotic Bcl-2 family protein, was translocated to mitochondria by the presence of GJBRH. The treatment of BAPTA-AM, permeable endogenous calcium chelator, inhibited GJBRH-induced caspase-3 and -9 activations, the release of cytochrome c and Smac/DIABLO into cytoplasm and the resultant cell death in HeLa human cervical carcinoma cells. The treatment of BAPTA-AM increased the expression of XIAP, which mediates binding to and inhibiting caspases and showed protective effect, in GJBRH-treated cells. GJBRH induced the expression of Glucose Response Protein 78 (GRP 78), a positive ER stress marker protein. However, BAPTA-AM did not interfere with the ER-stress response pathway that triggers the expression of GRP 78. This study showed that GJBRH induces cell death, which occurs downstream of or parallel to this point in the ER-stress pathway linked to apoptosis. In conclusion, GJBRH induces apoptosis in HeLa cells via ER stress-pathway associated mitochondria-dependent apoptosis mechansim.  相似文献   

3.
Adeno-associated virus (AAV) type 2 Rep78 is a multifunctional protein required for AAV DNA replication, integration, and gene regulation. The biochemical activities of Rep78 have been described, but the effects of Rep proteins on the cell have not been characterized. We have analyzed Rep-mediated cytotoxicity. We demonstrated that Rep78 expression is sufficient to induce cell death and disruption of the cell cycle. Cell death was found to be mediated by apoptosis. Rep78 expression resulted in the activation of caspase-3, a terminal caspase directly involved in the execution of cell death. A peptidic inhibitor of caspase-3, Z-Asp-Glu-Val-Asp-fluoromethylketone (Z-DEVD-FMK), abrogated Rep78-induced apoptosis, indicating that Rep78-mediated apoptosis is caspase-3 dependent. Rep78 induced apoptosis in wild-type p53-containing human embryonal carcinoma NT-2 cells and in p53-null promyelocytic human HL-60 cells, indicating that at least one pathway of Rep78-induced apoptosis is p53 independent. Apoptosis was shown to occur during the G(1) and early S phases of the cell cycle. By analyzing the effects of Rep78 mutations on cell viability, the cause of cell death was attributed in part to two biochemical activities of Rep78, DNA binding and ATPase/helicase activity. The endonuclease activity of Rep78 did not contribute to apoptosis induction.  相似文献   

4.
Caspase-8 has an important role as an initiator caspase during death receptor-mediated apoptosis. Moreover, it has been reported to contribute to the regulation of cell fate in various types of cells including T-cells. In this report, we show that caspase-8 has an essential role in cell survival in mouse T-lymphoma-derived L5178Y cells. The knockdown of caspase-8 expression decreased the growth rate and increased cell death, both of which were induced by the absence of protease activity of procaspase-8. The cell death was associated with reactive oxygen species (ROS) accumulation, caspase activation, and autophagosome formation. The cell death was inhibited completely by treatment with ROS scavengers, but only partly by treatment with caspase inhibitors, expression of Bcl-xL, and knockdown of caspase-3 or Atg-7 which completely inhibits apoptosis or autophagosome formation, respectively, indicating that apoptosis and autophagy-associated cell death are induced simultaneously by the knockdown of caspase-8 expression. Further analysis indicated that RIP1 and RIP3 regulate this multiple cell death, because the cell death as well as ROS production was completely inhibited by not only treatment with the RIP1 inhibitor necrostatin-1, but also by knockdown of RIP3. Thus, in the absence of protease activity of procaspase-8, RIP1 and RIP3 simultaneously induce not only nonapoptotic cell death conceivably including autophagic cell death and necroptosis but also apoptosis through ROS production in mouse T-lymphoma cells.  相似文献   

5.
Chondrosarcoma is a malignant primary bone tumor that responds poorly to both chemotherapy and radiation therapy. The aim of this study was to elucidate the mechanism of the novel Combretastatin A-4 derivative, 2-(furanyl)-5-(pyrrolidinyl)-1-(3,4,5-trimethoxybenzyl)benzoimidazole (FPTB)-induced human chondrosarcoma cells apoptosis. FPTB induced cell apoptosis in human chondrosarcoma cell line but not primary chondrocytes. FPTB induced up-regulation of Bax and Bak, down-regulation of Bcl-2 and Bcl-XL and dysfunction of mitochondria in chondrosarcoma. FPTB also triggered endoplasmic reticulum (ER) stress, as indicated by changes in cytosol-calcium levels. We found that FPTB increased glucose-regulated proteins (GRP)78 but not GRP94 expression. In addition, treatment of cells with FPTB induced calpain expression and activity. Transfection of cells with GRP78 or calpain siRNA reduced FPTB-mediated cell apoptosis. Therefore, FPTB-induced apoptosis in chondrosarcoma cells through the mitochondria dysfunction and involves caspase-9 and caspase-3-mediated mechanism. FPTB also induced cell death mediated by increasing ER stress, GPR78 activation, and Ca(2+) release, which subsequently triggers calpain, caspase-12 and caspase-3 activity, resulting in apoptosis.  相似文献   

6.
Mast cells play an important role in both allergy and innate immunity. Recently, we demonstrated an active interaction between human mast cells and Pseudomonas aeruginosa leading to the production of multiple cytokines. Here, we show that both primary cultured human cord blood-derived mast cells and the human mast cell line HMC-1 undergo apoptosis as determined by single-stranded DNA (ssDNA) formation after stimulation with P. aeruginosa exotoxin A (ETA), a major toxin produced by this bacterium. ETA-induced ssDNA formation was completely inhibited by Z-VAD (where Z is benzyloxycarbonyl), which blocks multiple caspases, suggesting a role for caspases in this process. Active caspase-3 formation in mast cells after an ETA challenge was detected by both Western blotting and flow cytometry analysis. ETA-induced caspase-3 activity in human mast cells was demonstrated by the detection of a characteristic 23 kDa product of D4-GDI (where GDI is guanine nucleotide dissociation inhibitor), an endogenous caspase-3 substrate. Interestingly, a specific caspase-8 inhibitor, Z-IETD-fmk (where fmk is fluoromethyl ketone), blocked ETA-induced cleavage of D4-GDI, but a caspase-9 inhibitor (Z-LEHD-fmk) did not. Treatment of mast cells with caspase-3 inhibitor Z-DEVD-fmk or caspase-8 inhibitor Z-IETD-fmk reduced the generation of ssDNA induced by ETA, suggesting a role for caspase-8 and -3 in ETA-induced mast cell apoptosis. Furthermore, treatment of mast cells with ETA induced decreases of the short form and a long form (p43) of Fas-associated death domain protein (FADD)-like interleukin-1beta-converting enzyme (FLICE) (caspase-8)-inhibitory proteins (FLIPs), which are endogenous caspase-8 inhibitors. Taken together, these results suggest that ETA-induced mast cell apoptosis involves down-regulation of antiapoptotic proteins, FLIPs, and activation of caspase-8 and -3 pathways.  相似文献   

7.
The airway epithelium is critical for the normal integrity and function of the respiratory system. Excessive epithelial cell apoptosis contributes to cell damage and airway inflammation. We previously demonstrated that lymphocyte-derived microparticles (LMPs) induce apoptosis of human bronchial epithelial cells. However, the underlying mechanisms contributing to LMPs-evoked epithelial cell death are largely unknown. Here we used bronchial and lung tissue cultures to confirm the pro-apoptotic effects of LMPs. In cell culture experiments, we found that LMPs induced human airway epithelial cell apoptosis with associated increases in caspase-3 activity. In addition, LMPs treatment triggered oxidative stress in epithelial cells by enhancing production of malondialdehyde, superoxide, and reactive oxygen species (ROS), and by inhibiting production of the antioxidant glutathione. Moreover, decreasing cellular ROS with the antioxidant N-acetylcysteine rescued epithelial cell viability. Together, these results demonstrate an important role for oxidative stress in LMPs-induced cell death. In epithelial cells, LMPs treatment induced phosphorylation of p38 MAPK and arachidonic acid accumulation. Moreover, arachidonic acid was significantly cytotoxic towards LMPs-treated epithelial cells, whereas inhibition of p38 MAPK was protective against these cytotoxic effects. Similarly, inhibition of arachidonic acid production led to decreased caspase-3 activity, thus rescuing airway epithelial cells from LMPs-induced cell death. In conclusion, our results show that LMPs induce airway epithelial cell apoptosis by activating p38 MAPK signaling and stimulating production of arachidonic acid, with consequent increases in oxidative stress and caspase-3 activity. As such, LMPs may be regarded as deleterious markers of epithelial cell damage in respiratory diseases.  相似文献   

8.
Gastric cancer and cervical cancer are two major malignant tumors that threaten human health. The novel chemotherapeutic drugs are needed urgently to treat gastric cancer and cervical cancer with high anticancer activity and metabolic stability. Previously we have reported the synthesis, characterization and identification of a novel combretastatin A-4 analog, 3-(3-methoxyphenyl)-6-(3-amino-4- methoxyphenyl) -7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazine (XSD-7). In this study, we sought to investigate its anticancer mechanisms in a human gastric cancer cell line (SGC-7901 cells) and human cervical carcinoma cell line (HeLa cells). The 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed that XSD-7 induced cytotoxicity in SGC-7901 and HeLa cells with inhibitory concentration 50 values of 0.11 ± 0.03 and 0.12 ± 0.05 µM, respectively. Immunofluorescence studies proved that XSD-7 inhibited microtubule polymerization during cell division in SGC-7901 and HeLa cells. Then, these cells were arrested at G2/M cell cycle and subsequently progressed into apoptosis. In further study, mitochondrial membrane potential analysis and Western blot analysis demonstrated that XSD-7 treatment-induced SGC-7901 cell apoptosis via both the mitochondria-mediated pathway and the death receptor-mediated pathway. In contrast, XSD-7 induced apoptosis in HeLa cells mainly via the mitochondria-mediated pathway. Hence, our data indicate that XSD-7 exerted antiproliferative activity by disrupting microtubule dynamics, leading to cell cycle arrest, and eventually inducing cell apoptosis. XSD-7 with novel structure has the potential to be developed for therapeutic treatment of gastric cancer and cervical cancer.  相似文献   

9.
10.

The synthesised zeolite X from coal fly ash showed significant cytotoxic activity in contradiction of HeLa cells (cervical cancer) in a concentration-dependent way at concentrations ranges from 200 µg to 0.781 µg/ml as shown by MTT assay and failed to cause cytotoxic effect in normal cells (Gh239). Cell cycle analysis exposed that zeolite X (10 and 15 µg/ml) endorses cell growth inhibition by inducing G2/M phase arrest in HeLa cells as observed using flow cytometry. The confocal microscopic results depicted increased early apoptotic related changes in HeLa cell lines induced by zeolite X at a dosage of 10, 15 and 20 µg/ml. Zeolite X at a dosage of 10, 15 and 20 µg/ml in HeLa cells showed fragmentation of DNA by ladder pattern thereby indicates that cell death is related with apoptosis. By the increase of Bax/Bcl-2 ratio, zeolite X leads to the caspase-3 and caspase-9 activation and allow the cells to enter apoptosis. These collective results evidently showed that the influence of mitochondria-mediated signalling pathway in zeolite X induced apoptosis and intensely delivered investigational suggestion for the use of zeolite X as a significant curative agent in the preclusion and therapy of human cervical carcinoma.

  相似文献   

11.
Tumors can promote their own progressive growth by inducing T cell apoptosis. Though previous studies suggested that tumor-mediated T cell killing is receptor dependent, we recently showed that tumor gangliosides also participate, a notion consistent with reports indicating that, in some cell types, gangliosides can activate the intrinsic apoptotic pathway by stimulating reactive oxygen species production, cytochrome c release, and caspase-9 activation. In this study, we used normal peripheral blood T cells, as well as caspase-8-, caspase-9-, and Fas-associated death domain protein-deficient Jurkat cells, to assess whether the death ligands and gangliosides overexpressed by the renal cell carcinoma (RCC) cell line SK-RC-45 can independently stimulate T cell apoptosis as a mechanism of immune escape. Anti-FasL Abs and the glycosylceramide synthase inhibitor 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP) each partially inhibited the ability of SK-RC-45 to kill cocultured activated T cells; together, as purified molecules, RCC gangliosides and rFasL induced a more extensive mitochondrial permeability transition and greater levels of apoptosis than either agent alone, equivalent to that induced by the FasL- and ganglioside-expressing RCC line itself. rFasL-mediated apoptosis was completely inhibited in caspase-8- and Fas-associated death domain protein-negative Jurkat cells, though apoptosis induced by purified gangliosides remained intact, findings that correlate with the observed partial inhibition of SK-RC-45-induced apoptosis in the Jurkat lines with defective death receptor signaling. Western blot analysis performed on lysates made from wild-type and mutant Jurkat cells cocultured with SK-RC-45 revealed caspase activation patterns and other biochemical correlates which additionally supported the concept that tumor-associated gangliosides and FasL independently activate the caspase cascade in T cells through the intrinsic and extrinsic pathways, respectively.  相似文献   

12.
Trichosanthin (TCS), a type I ribosome-inactivating protein, induces cell death in various cell types including several tumor cell lines. However, the mechanism remains largely uncharacterized. In this study, we investigated the possible mechanism underlying its cytotoxicity by using human chronic myeloid leukemia cell line K562. We found that TCS induced apoptosis in K562 cells in a time- and concentration-dependent manner and can be blocked by caspase-3 inhibitors. Interestingly, TCS treatment induced a transient elevation in intracellular calcium concentration and a slow increase in reactive oxygen species production, while calcium chelators and antioxidants had no obvious effect on TCS-induced apoptosis, suggesting that calcium changes and reactive oxygen species may not be involved in TCS-mediated apoptosis in K562 cells. Instead we found that TCS partly inhibited PKC activity. Indeed, the PKC activator, PMA, inhibited while the PKC inhibitor, calphostin c, enhanced TCS-induced apoptosis. These PKC modulators had similar effects on TCS-induced cleavage of caspase-3, and caspase-3 inhibitors prevented calphostin c-enhanced apoptosis induced by TCS. In summary, we conclude that TCS induces apoptosis in K562 cells partly via PKC inhibition and caspase-3 activation.  相似文献   

13.
We have previously demonstrated that nitrosylcobalamin (NO-Cbl), an analogue of vitamin B12 that delivers nitric oxide (NO), had potent antiproliferative activity against several human cancer cell lines. NO-Cbl induced apoptosis via a death receptor/caspase-8 pathway. In this study, we demonstrate that a functional Apo2L/TRAIL receptor was necessary for the induction of cell death by NO-Cbl. Furthermore, the Apo2L/TRAIL death receptor DR4 (TRAIL R1) was S nitrosylated following NO-Cbl treatment. Human melanoma (A375), renal carcinoma (ACHN), and ovarian carcinoma (NIH-OVCAR-3) cells were treated with NO-Cbl and subjected to the biotin switch assay; S-nitrosylated DR4 was detected in all three cell lines. NO-Cbl treatment did not cause S nitrosylation of DR5. The seven cysteine residues located in the cytoplasmic domain of DR4 were individually point mutated to alanines. NIH-OVCAR-3 cells expressing the DR4 C336A mutation lacked S nitrosylation following NO-Cbl treatment. Overexpression of wild-type DR4 sensitized cells to growth inhibition by NO-Cbl. Cells expressing the DR4 C336A mutant were more resistant to NO-Cbl and Apo2L/TRAIL than were the other six C-A mutations or wild-type cells. The C336A mutant also displayed blunted caspase-8 enzymatic activity following NO-Cbl treatment compared to the other mutants. Thus, DR4 residue C336 becomes S nitrosylated and promotes apoptosis following NO-Cbl treatment.  相似文献   

14.
Radiotherapy is the major treatment modality for uterine cervical cancer, but in some cases, the disease is radioresistant. Defining the molecular events that contribute to radioresistance and progression of cancer are of critical importance. Here we evaluated the role of Fused Toes Homolog (FTS) in radiation resistance of cervical carcinoma. Immunostaning of cervical cancer cells and tissues revealed that FTS localization and expression was changed after radiation. Targeted stable knockdown of FTS in HeLa cells led to the growth inhibition after radiation. Radiation induced AKT mediated cytoprotective effect was countered by FTS knockdown which leads to PARP cleavage and caspase-3 activation leading to cell death. FTS knockdown promotes radiation induced cell cycle arrest at G0/G1 and apoptosis of HeLa cells with concurrent alterations in the display of cell cycle regulatory proteins. This study revealed FTS is involved in radioresistance of cervical cancer. Targeted inhibition of FTS led to the shutdown of key elemental characteristics of cervical cancer and could lead to an effective therapeutic strategy.  相似文献   

15.
Caspase-3 activity has been described to be essential for drug-induced apoptosis. Recent results suggest that in addition to its downstream executor function, caspase-3 is also involved in the processing of upstream caspase-8 and -9. To test the absolute requirement for caspase-3, we examined mitomycin C (MMC)-induced apoptosis in the caspase-3 deficient human breast cancer cell line MCF-7. MMC was used as anticancer drug since this agent was preferentially active compared to chemotherapeutic compounds with differing mechanisms of action such as cisplatin, docetaxel, or lovastatin. MMC treatment led to pronounced caspase-8, -9, and -7 processing and early morphological features of apoptosis within 48 h. This could be inhibited by the broad-spectrum caspase inhibitor z-VAD.fmk and to a lesser extent by z-IETD.fmk and z-LEHD.fmk, which have a certain preference for inhibiting caspase-8 and -9, respectively. MMC induced apoptosis in MCF-7 cells was not mediated by the death receptor pathway as demonstrated by experiments using the inhibiting anti-Fas antibody ZB4 and transfections with CrmA, a viral serpin inhibitor of caspase-8, and the dominant negative Fas-associated death domain (FADD-DN). Stable expression with Bcl-2 significantly prevented the processing of caspase-9 but also of caspase-8 and blocked the induction of apoptosis. Thus, we provide evidence that caspase-3 activity is dispensable for MMC-induced apoptosis and for caspase-8 and -9 processing in MCF-7 cells.  相似文献   

16.
17.
Coxsackievirus B3-induced apoptosis and caspase-3   总被引:11,自引:0,他引:11  
Yuan JP  Zhao W  Wang HT  Wu KY  Li T  Guo XK  Tong SQ 《Cell research》2003,13(3):203-209
  相似文献   

18.
Previously, we analyzed mice lacking either caspase-2 or caspase-3 and documented a role for caspase-2 in developmental and chemotherapy-induced apoptosis of oocytes. Those data also revealed dispensability of caspase-3, although we found this caspase critical for ovarian granulosa cell death. Because of the mutual interdependence of germ cells and granulosa cells, herein we generated caspase-2 and -3 double-mutant (DKO) mice to evaluate how these two caspases functionally relate to each other in orchestrating oocyte apoptosis. No difference was observed in the rate of spontaneous oocyte apoptosis between DKO and wildtype (WT) females. In contrast, the oocytes from DKO females were more susceptible to apoptosis induced by DNA damaging agents, compared with oocytes from WT females. This increased sensitivity to death of DKO oocytes appears to be a specific response to DNA damage, and it was associated with a compensatory upregulation of caspase-12. Interestingly, DKO oocytes were more resistant to apoptosis induced by methotrexate (MTX) than WT oocytes. These results revealed that in female germ cells, insults that directly interfere with their metabolic status (e.g. MTX) require caspase-2 and caspase-3 as obligatory executioners of the ensuing cell death cascade. However, when DNA damage is involved, and in the absence of caspase-2 and -3, caspase-12 becomes upregulated and mediates apoptosis in oocytes. Takai and Matikainen contributed equally to this work.  相似文献   

19.
It has been shown that excess stress to the endoplasmic reticulum (ER) triggers apoptosis, but the mechanisms underlying these processes remain unclear. We and others have reported previously that DR5 expression is up-regulated in thapsigargin (THG)-treated human cancer cells. Here, we provide evidence that CHOP is involved in THG up-regulation of DR5, which is a critical step for ER stress-induced apoptosis in human cancer cells. In human colon cancer HCT116 cells, knockdown of DR5 by siRNA blocked THG-induced Bax conformational change along with caspase-3 activation and cell death. Moreover, inhibition of CHOP expression attenuated DR5 up-regulation and apoptosis induced by THG, whereas ectopic expression of DR5 restored the sensitivity of CHOP siRNA-transfected cells to THG-induced apoptosis. In addition to HCT116 cells, inhibition of CHOP or DR5 induction also attenuated THG-induced cell death in other cancer cell lines including LNCaP, A2780S, and DU145, indicating that CHOP and DR5 are critical for ER stress-mediated apoptosis in human carcinoma cells. Furthermore, we identified a potential CHOP-binding site in the 5'-flanking region of the DR5 gene. Mutation of this site abrogated the enhanced reporter activity in response to THG treatment. Together, our findings suggest that CHOP regulates ER stress-induced apoptosis, at least in part, through enhancing DR5 expression in some types of human cancer cells.  相似文献   

20.
Membrane-presented CD40 agonists can induce apoptosis in carcinoma, but not normal homologous epithelial cells, whereas soluble agonists are growth inhibitory but not proapoptotic unless protein synthesis is blocked. Here we demonstrate that membrane-presented CD40 ligand (CD154) (mCD40L), but not soluble agonists, triggers cell death in malignant human urothelial cells via a direct mechanism involving rapid upregulation of TNFR-associated factor (TRAF)3 protein, without concomitant upregulation of TRAF3 mRNA, followed by activation of the c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) pathway and induction of the caspase-9/caspase-3-associated intrinsic apoptotic machinery. TRAF3 knockdown abrogated JNK/AP-1 activation and prevented CD40-mediated apoptosis, whereas restoration of CD40 expression in CD40-negative carcinoma cells restored apoptotic susceptibility via the TRAF3/AP-1-dependent mechanism. In normal human urothelial cells, mCD40L did not trigger apoptosis, but induced rapid downregulation of TRAF2 and 3, thereby paralleling the situation in B-lymphocytes. Thus, TRAF3 stabilization, JNK activation and caspase-9 induction define a novel pathway of CD40-mediated apoptosis in carcinoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号