首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been previously reported by J. R. Lenz et al. [(1978) Biochemistry 17, 80--87] that certain phosphorylated sugars stimulate protein synthesis in extracts of mammalian cells. This effect was found to be due to a stimulation of Met-tRNAf binding to 40S ribosomal subunits, both in whole extracts and with isolated ribosomes. However, formation of a ternary complex of Met-tRNAf, initiation factor eIF-2, and GTP was not stimulated. It was also shown that the stimulation is not due solely to metabolism of the sugars. The present communication further characterizes the stimulatory effect of the sugars. They were found to prevent the inactivation of ribosomes that occurs during protein synthesis incubations. The sugars were also found to inhibit cAMP-dependent protein kinases noncompetitively. However, they stimulate Met-tRNAf binding to 40S ribosomal subunits even under conditions in which an inhibition of protein kinase has no effect. Although it has bot been possible to demonstrate a direct association of the sugars with the 40S initiation complex, the evidence suggests that their effect is mediated by an interaction with one of the components involved in the formation of this complex.  相似文献   

2.
Eukaryotic initiation factor 2 (eIF-2) is shown to bind ATP with high affinity. Binding of ATP to eIF-2 induces loss of the ability to form a ternary complex with Met-tRNAf and GTP, while still allowing, and even stimulating, the binding of mRNA. Ternary complex formation between eIF-2, GTP, and Met-tRNAf is inhibited effectively by ATP, but not by CTP or UTP. Hydrolysis of ATP is not required for inhibition, for adenyl-5'-yl imidodiphosphate (AMP-PNP), a nonhydrolyzable analogue of ATP, is as active an inhibitor; adenosine 5'-O-(thiotriphosphate) (ATP gamma S) inhibits far more weakly. Ternary complex formation is inhibited effectively by ATP, dATP, or ADP, but not by AMP and adenosine. Hence, the gamma-phosphate of ATP and its 3'-OH group are not required for inhibition, but the beta-phosphate is indispensible. Specific complex formation between ATP and eIF-2 is shown 1) by effective retention of Met-tRNAf- and mRNA-binding activities on ATP-agarose and by the ability of free ATP, but not GTP, CTP, or UTP, to effect elution of eIF-2 from this substrate; 2) by eIF-2-dependent retention of [alpha-32P]ATP or dATP on nitrocellulose filters and its inhibition by excess ATP, but not by GTP, CTP, or UTP. Upon elution from ATP-agarose by high salt concentrations, eIF-2 recovers its ability to form a ternary complex with Met-tRNAf and GTP. ATP-induced inhibition of ternary complex formation is relieved by excess Met-tRNAf, but not by excess GTP or guanyl-5'-yl imidodiphosphate (GMP-PNP). Thus, ATP does not act by inhibiting binding of GTP to eIF-2. Instead, ATP causes Met-tRNAf in ternary complex to dissociate from eIF-2. Conversely, affinity of eIF-2 for ATP is high in the absence of GTP and Met-tRNAf (Kd less than or equal to 10(-12) M), but decreases greatly in conditions of ternary complex formation. These results support the concept that eIF-2 assumes distinct conformations for ternary complex formation and for binding of mRNA, and that these are affected differently by ATP. Interaction of ATP with an eIF-2 molecule in ternary complex with Met-tRNAf and GTP promotes displacement of Met-tRNAf from eIF-2, inducing a state favorable for binding of mRNA. ATP may thus regulate the dual binding activities of eIF-2 during initiation of translation.  相似文献   

3.
The 133,000 X g supernatant fraction prepared from ascites cells in 20 mM KCl (low CKl supernatant) contained the initiation factors EIF-1 and EIF-2 (and the elongation factore EF-1 and EF-2) but lacked EIF-3; thus, low KCl supernatant could be used to assay for EIF-3. EIF-3 was prepared from a crude initiation factor perparation (a 250 mM KCl extract of ascites cell ribosomes precipitated with 70% saturated ammonium sulfate) by chromatography on DEAE-Sephadex A-50 and hydroxylapatite. The EIF-O had no detectable EIF-1 and little or no EIF-2. Factor EIF-3 was required fro translation of encephalomyocarditis virus RNA. The molecular weight of EIF-3 was estimated by Sephadex G-200 filtration to be 139,000; the sedimentation coefficient was calculated to be about 5.8. EIF-3 formed a binary complex specifically with the initiator tRNA, Met-tRNAf, and if GTP was present the factor formed a ternary complex (EIF-3-Met-tRNAf-GTP). The EIF-3 preparation had no methionyl-tRNA synthetase activity to account for binding. Complex-formation was with eukaryotic Met-tRNAf and no other aminoacyl-tRNA. The binary and ternary complexes were retained quantitatively on Millipore filters (which was the most convenient assay), but they could also be demonstrated by filtration through Sephadex G-100 or by glycerol gradient centrifugation. GTP increased the rate, the amount, and the stability of complex formed; the ration of GTP to Met-tRNAf in the ternary complex appeared to be 1. The binary and the ternary complexes transferred Met-tRNAf to the 40 S ribosomal subunits, but not to 60 S subparticles. The factor-dependent binding of Met-tRNAf to the 40 S subunit did not require mRNA (or GTP). In the presence of 60 S subunits, the initiator tRNA bound to 40 S subunits was not transferred to 80 S ribosomes even if mRNA was added--that reaction may require another initiation factor. Treatment of EIF-3 with N-ethylmaleimide led to loss of its activity in complex formation and in support of the translation of encephalomyocarditis virus RNA. In addition to forming the binary and ternary complexes, and supporting the translation of encephalomyocarditis virus RNA, EIF-3 also increases the number of free ribosomal subunits by either preventing their association or causing dissociation of 80 S couples.  相似文献   

4.
Eukaryotic initiation factor 5 (eIF-5), isolated from rabbit reticulocyte lysates, is a monomeric protein of 58-62 kDa. The function of eIF-5 in the formation of an 80 S polypeptide chain initiation complex from a 40 S initiation complex has been investigated. Incubation of the isolated 40 S initiation complex (40 S.AUG.Met.tRNAf.eIF-2 GTP) with eIF-5 resulted in the rapid and quantitative hydrolysis of GTP bound to the 40 S initiation complex. The rate of this reaction was unaffected by the presence of 60 S ribosomal subunits. Analysis of eIF-5-catalyzed reaction products by gel filtration indicated that both eIF-2.GDP binary complex and Pi formed were released from the ribosomal complex whereas Met-tRNAf remained bound to 40 S ribosomes as a Met-tRNAf.40 S.AUG complex. Reactions carried out with biologically active 32P-labeled eIF-5 indicated that this protein was not associated with the 40 S.AUG.Met-tRNAf complex; similar results were obtained by immunological methods using monospecific anti-eIF-5 antibodies. The isolated 40 S.AUG.Met-RNAf complex, free of eIF-2.GDP binary complex and eIF-5, readily interacted with 60 S ribosomal subunits in the absence of exogenously added eIF-5 to form the 80 S initiation complex capable of transferring Met-tRNAf into peptide linkages. These results indicate that the sole function of eIF-5 in the initiation of protein synthesis is to mediate hydrolysis of GTP bound to the 40 S initiation complex in the absence of 60 S ribosomal subunits. This leads to formation of the intermediate 40 S.AUG.Met-tRNAf and dissociation of the eIF-2.GDP binary complex. Subsequent joining of 60 S ribosomal subunits to the intermediate 40 S.AUG.Met-tRNAf complex does not require participation of eIF-5. Thus, the formation of an 80 S ribosomal polypeptide chain initiation complex from a 40 S ribosomal initiation complex can be summarized by the following sequence of partial reactions. (40 S.AUG.Met-tRNAf.eIF-2.GTP) eIF-5----(40 S.AUG.Met-tRNAf) + (eIF-2.GDP) + Pi (1) (40 S.AUG.Met-tRNAf) + 60 S----(80 S.AUG.Met-tRNAf) (2) 80 S initiation complex.  相似文献   

5.
Antibodies prepared against a homogeneous preparation of Co-eIF-2A20 [Ahmad et al. (1985) J. Biol. Chem. 260, 6955-6959] reacted with several polypeptides including an 80-kDa polypeptide present in a crude yeast ribosomal salt wash. This 80-kDa polypeptide, containing Co-eIF-2A (Co-eIF-2A80) activity, has been extensively purified using a two-step purification procedure involving an immunoaffinity column chromatograph prepared using antibodies against Co-eIF-2A20 (fraction II) and hydroxyapatite chromatography (fraction III). The factors, eIF-2 + homogeneous Co-eIF-2A80 (fraction III) promoted Met-tRNAf.40S complex formation with an AUG codon but not with a physiological mRNA or a polyribonucleotide messenger poly(U,G) whereas eIF-2 + a partially purified Co-eIF-2A80 preparation (fraction II) promoted Met-tRNAf.40S complex formation with an AUG codon as well as with globin mRNA and poly(U,G) messenger. This factor-promoted Met-tRNAf binding to 40S ribosomes depends absolutely on the presence of a polyribonucleotide messenger containing an initiation codon (such as AUG or GUG). Other polyribonucleotide messengers tested, such as poly(U), poly(A) and poly(A,C) were completely ineffective in this binding reaction. This result indicates that the Met-tRNAf.40S.mRNA complex is formed by a direct interaction between Met-tRNAf, 40S ribosomes and the initiation site in mRNA. A mechanism has been proposed for Met-tRNAf.40S.mRNA complex formation in yeast.  相似文献   

6.
The roles of Co-eIF-2, Co-eIF-2A80, and GDP in ternary complex and Met-tRNAf X 40 S initiation complex formation were studied. 1) Partially purified eukaryotic initiation factor 2 (eIF-2) (50% pure) preparations contained 0.4-0.6 pmol of bound GDP/pmol of eIF-2. eIF-2 purity was calculated from ternary complex formation in the absence of Mg2+ and in the presence of excess Co-eIF-2. 2) In the absence of Mg2+, approximately 30% of the potentially active eIF-2 molecules formed ternary complexes, and both Co-eIF-2 and Co-eIF-2A80 were equally effective in full activation of the eIF-2 molecules for ternary complex formation. 3) In the presence of Mg2+, approximately 10% of the potentially active eIF-2 molecules formed ternary complexes in the absence of ancillary factors, and the ancillary factors Co-eIF-2A80 and Co-eIF-2 raised the incorporation to 20 and 50% of the eIF-2 molecules, respectively. 4) In the absence of Mg2+, [3H]GDP in preformed eIF-2 X [3H]GDP was readily displaced by GTP during ternary complex formation. 5) In the presence of Mg2+, [3H]GDP remained tightly bound to eIF-2 and ternary complex formation was inhibited. Co-eIF-2, but not Co-eIF-2A80, was effective in promoting [3H]GDP displacement and the former was more effective in promoting ternary complex formation than the latter. 6) eIF-2 X [3H]GDP was converted to eIF-2 X [3H] GTP by incubation in the presence of nucleoside-5'-diphosphate kinase and ATP, but the eIF-2 X [3H]GTP thus formed did not bind Met-tRNAf in the presence of Mg2+ and required exogeneous addition of Co-eIF-2 and GTP for ternary complex formation and GTP displacement. 7) In the absence of Mg2+, the increased ternary complex formed in the presence of eIF-2 X [3H] GDP and Co-eIF-2A80 (with accompanying loss of [3H] GDP) was inactive in a subsequent reaction, which involves Met-tRNAf transfer to 40 S ribosomes (in the presence of Mg2+), and required trace amounts of Co-eIF-2 for such activity. Based on the above observations, we have suggested a two-step activation of eIF-2 molecules by the Co-eIF-2 protein complex for functional ternary complex formation. One of these steps involves the Co-eIF-2A component of Co-eIF-2. This activation results in stimulated Met-tRNAf binding to eIF-2 and is most apparent in the absence of Mg2+ and with aged eIF-2 molecules.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The binding of the initiator tRNA Met-tRNAf, and of acetylphenylalanyl-tRNA, has been examined with rat liver 40S subunits derived from 80S ribosomes by dissociation with native 40S subunits sedimented from the postmicrosomal fraction and with native 40S subunits extracted with high salt-containing solutions. Binding of Met-tRNAf and acetylphenylalanyl-tRNA to derived and to salt-extracted native 40S subunits is observed in the presence of the appropriate polynucleotide template and a highly purified binding factor obtain from the soluble fraction of rat liver homogenates (R.L. IF-1). Native 40S subunits bind acetylphenylalanyl-tRNA in a reaction that requires poly(U) but not exogenous binding factor; however, Met-tRNAf is not bound to native subunits, even when supplemented with the soluble binding factor, or under conditions where factor-independent, high Mg2+-stimulated binding is observed with the derived and the salt-washed native 40S subunits. The extract obtained from native 40S subunits promotes the binding of acetylphenylalanyl-tRNA but not Met-tRNAf to derived and to salt-extracted native subunits. The addition of native 40S extract to incubations containing R.L. IF-1, Met-tRNAf, and derived 40S subunits, inhibits the formation of 40S-Met-tRNAf complex. These data suggest that the binding activity that is specific for 40S subunits and initiator tRNA, and an activity that inhibits the interaction with Met-tRNAf specifically, are both associated with native 40S subunits, and can be extracted from them by treatment with high salt-containing solutions. Derived 40S subunits react quantitatively with 60S particles to form 80S ribosomes which do not bind acetylphenylalanyl-tRNA with binding factor R.L. IF-1. Native 40S subunits react only partly with 60S subunits; about half of the native 40S subunit population forms 80S ribosomes which do not subsequently bind acetylphenylalanyl-tRNA; the remaining native 40S subunits which do not react with 60S particles bind acetylphenylalanyl-tRNA but to a lesser extent. When preformed native 40S-acetylphenylalanyl-tRNA complex is incubated with 60S subunits, about half of the subunits form an 80S-acetylphenylalanyl-tRNA complex, while the rest remains as 40S-acetylphenylalanyl-tRNA. The addition of native 40S subunit salt extract to incubations containing preformed 80S ribosomes dissociates the particles to subunits. These data suggest that in addition to the initiator tRNA binding activity and the activity that inhibits Met-tRNAf interaction, part of the native 40S subunit population also contains an activity that dissociates 80S ribosomes.  相似文献   

8.
Evidence is presented that the GTP initially bound in ternary complex (Met-tRNAf.GTP.eukaryotic initiation factor 2 (eIF-2)) is the same GTP that is hydrolyzed to allow joining of a 40 S preinitiation complex with 60 S subunits. This evidence was obtained by two quite dissimilar techniques. The first was a kinetic analysis of AUG-directed methionyl-puromycin synthesis using either eIF-2 of eIF-2A to direct the binding of Met-tRNAf to 40 S subunits. The second technique was the isolation of 40 S preinitiation complexes by Sepharose 6B chromatography and subsequent quantitation of GTP hydrolysis and methionyl-puromycin synthesis under conditions where 80 S complex formation is permitted.  相似文献   

9.
A Met-tRNAf binding factor (IF-2) from the microsomal fraction of rat liver and rat hepatoma ascites cells was partially purified by ammonium sulphate fractionation, DEAE-cellulose and phosphocellulose chromatography. The factor binds [3H]Met-tRNAf only in the presence of either GTP or GMPPCP. Maximal binding takes place at 37 degrees C and in the absence of Mg++. The factor is specific for Met-tRNAf and does not bind Phe-tRNA from rat liver or from E. coli. The ternary complex [Met-tRNAf . IF-2 . GTP1 binds to 40 S ribosomal subunits from rat liver in the absence of mRNA or poly(A, G, U) without GTP hydrolysis. GDP as well as aurintricarboxylic acid inhibit the ternary complex formation. Both factors are rapidly inactivated by N-ethylmaleimide treatment and by preincubation at 45 degrees C. Heat inactivation is partially prevented by GTP and GDP. With regard to the functional properties there are no significant differences between IF-2 from normal liver and hepatoma cells. On the other hand heat denaturation compared to the rat liver factor, which may be due to differences in contaminating proteins.  相似文献   

10.
Dormant and developing embryos of Artemia salina contain equivalent amounts of eIF-2, the eukaryotic initiation factor which forms a ternary complex with GTP and Met-tRNAf. The factor was purified from 0.5 M NH4Cl ribosomal washes by (NH4)2SO4 fractionation, followed by chromatography on heparin-Sepharose, DEAE-cellulose, hydroxyapatite and phosphocellulose. Purified preparations from dormant and developing embryos have similar specific activities and nucleotide requirements. The mobility of both proteins in dodecylsulfate gel electrophoresis is indistinguishable, and each contains three major polypeptide chains of molecular weight 52 000, 45 000 and 42 000. Both proteins are also immunologically identical, and each stimulates amino acid incorporation in a cell-free system of protein synthesis. The binding of [35S]Met-tRNAf to 40-S ribosomal subunits is catalyzed by eIF-2 isolated from dormant or developing embryos and is dependent upon GPT and AUG. Binding of [35S]Met-tRNAf to 40-S ribosomal subunits, and ternary complex formation with eIF-2, GTP, and [35S]Met-tRNAf is stimulated 2--3-fold by a factor present in the 0.5 M NH4Cl ribosomal wash and which elutes from DEAE-cellulose at 50 mM KCl. This protein does not exhibit GTP-dependent binding of [35S]Met-tRNAf. Binding of GDP and GTP was investigated with purified eIF-2 from developing embryos. The factor forms a binary complex with GDP or GTP, and eIF-2-bound [3H]GDP exchanges very slowly with free nucleotides. Our results suggest that eIF-2 does not limit resumption of embryo development following encystment, nor does it limit mRNA translation in extracts from dormant embryos.  相似文献   

11.
The peptide chain initiation factor, Co-EIF-1 has been purified to homogeneity. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the homogeneous preparation gives a single protein band corresponding to a molecular weight of approximately 20,000. In the crude preparation, Co-EIF-1 exists in two molecular forms: Co-EIF-1H (Mr = 200,000) and Co-EIF-1L (Mr = 20,000). Both forms are equally active in all the reactions studied. Upon heating, the heavy form (Co-EIF-1H) is completely converted into the light form (Co-EIF-1L). Radioactively labeled [14C]Co-EIF-1 was prepared by reductive alkylation using [14C]formaldehyde and borohydride. [14C]Methyl-Co-EIF-1 binds specifically to EIF-1; EIF-1.[14C]Co-EIF-1 complex was analyzed by gel (Sephadex G-100) filtration. EIF-1.Co-EIF-1 complex is distinctly more stable towards heat than EIF-1 alone and the quarternary complex, Met-tRNAf.EIF-1.Co-EIF-1.GTP is more resistant to aurintricarboxylic acid than the ternary complex, Met-tRNAf.EIF-1.GTP. Both the quarternary complex, Met-tRNAf.EIF-1.Co-EIF-1.GTP, and the ternary complex, Met-tRNAf.EIF-1.GTP, are equally sensitive to Mg2+ in the presence of EIF-2 (TDF). In the presence of Co-EIF-1, the initial rate of Met-tRNAf binding to 40 S ribosomes was significantly increased.  相似文献   

12.
The phosphorylation of eukaryotic initiation factor (eIF) 2 alpha that occurs when rabbit reticulocyte lysate is incubated in the absence of hemin or with poly(I.C) causes inhibition of polypeptide chain initiation by preventing a separate factor (termed RF) from promoting the exchange of GTP for GDP on eIF-2. When lysate was incubated in the presence of hemin and [14C] eIF-2 or [alpha-32P]GTP, we observed binding of eIF-2 and GDP or GTP to 60 S ribosomal subunits that was slightly greater than that bound to 40 S subunits and little binding to 80 S ribosomes. When incubation was in the absence of hemin or in the presence of hemin plus 0.1 microgram/ml poly(I.C), eIF-2 and GDP binding to 60 S subunits was increased 1.5- to 2-fold, that bound to 80 S ribosomes was almost as great as that bound to 60 S subunits, and that bound to 40 S subunits was unchanged. Our data indicate that about 40% of the eIF-2 that becomes bound to 60 S subunits and 80 S ribosomes in the absence of hemin or with poly(I.C) is eIF-2(alpha-P) and suggest that the eIF-2 and GDP bound is probably in the form of a binary complex. The accumulation of eIF-2.GDP on 60 S subunits occurs before binding of Met-tRNAf to 40 S subunits becomes reduced and before protein synthesis becomes inhibited. The rate of turnover of GDP (presumably eIF-2.GDP) on 60 S subunits and 80 S ribosomes in the absence of hemin is reduced to less than 10% the control rate, because the dissociation of eIF-2.GDP is inhibited. Additional RF increases the turnover of eIF-2.GDP on 60 S subunits and 80 S ribosomes to near the control rate by promoting dissociation of eIF-2.GDP but not eIF-2(alpha-P).GDP. Our findings suggest that eIF-2.GTP binding to and eIF-2.GDP release from 60 S subunits may normally occur and serve to promote subunit joining. The phosphorylation of eIF-2 alpha inhibits polypeptide chain initiation by preventing dissociation of eIF-2.GDP from either free 60 S subunits (thus inhibiting subunit joining directly) or the 60 S subunit component of an 80 S initiation complex (thereby blocking elongation and resulting in the dissociation of the 80 S complex).  相似文献   

13.
A factor has been isolated from wheat germ that enhances the ability of initiation factor 2 (eIF-2) to form a ternary complex with GTP and Met-tRNAf and enhances the binding of Met-tRNAf to 40 s ribosomal subunits. This factor, designated Co-eIF2 beta, is a monomeric protein with a molecular weight of approximately 83,000. Wheat germ eIF-2 forms a stable binary complex with GDP but not with GTP. Co-eIF-2 beta enhances the formation of an eIF-2 . GDP complex, but does not enable eIF-2 to form a stable complex with GTP.  相似文献   

14.
Formation of a ternary initiation complex containing Met-tRNAf, GTP and eukaryotic initiation factor 2, is the first step in sequential assembly of the initiation complex. The concentration of GTP required for half maximal formation of the ternary complex is 2.5 with 10(-6) M. GDP is a potent competitive inhibitor of ternary complex formation with Ki = 3.4 with 10(-7) M. The nucleotide binding site on eukaryotic initiation factor 2 demonstrates relative specificity for GDP with KD(GDP) = 3.0 with 10(-8) M; 100-fold higher concentrations of GTP than GDP are required for displacement of either [(3)H]GDP or [(3)h]gtp from the necleotide binding site. An ATP-dependent stimulation of ternary complex formation observed in partially purified initiation factor preparations is due to nucleoside diphosphate kinase (EC 2.7.4.6) which serves to remove inhibitory levels of GDP by phosphorylation with ATP. Since GTP is hydrolyzed to GDP during protein synthesis, this provides a mechanism by which the ATP:ADP ratio may regulate the rate of initiation of protein synthesis.  相似文献   

15.
A two-dimensional polyacrylamide gel electrophoresis procedure has been used to identify initiation factors rapidly in the high-salt-wash fraction from reticulocyte ribosomes. Initiation factors are identified by relative mobility and by co-electrophoresis with purified factors. A creatine phosphate/ATP/GTP/Pi exchange system is described which has been used to maintain [gamma-32P]ATP and [gamma-32P]GTP at constant specific activity in the cell-free protein-synthesizing system. Phosphorylated proteins associated with the protein-synthesizing complex have been identified using a combination of the two procedures. The salt-wash fraction contains eight major phosphorylated proteins and a number of minor ones. Two phosphorylated proteins are observed to comigrate with two of the three subunits of eukaryotic initiation factor 2 (eIF-2), the initiation factor involved in binding Met-tRNAf onto the 40-S subunit and promoting dissociation of 80-S ribosomes. eIF-4B, one of the proteins involved in binding mRNA to 40-S subunits is also phosphorylated. The remainder of phosphorylated proteins in the high-salt-wash fraction are not previously characterized initiation factors and have not been identified further. Two of the six phosphoproteins associated with the salt-washed ribosomes comigrate with ribosomal proteins; one is the major phosphorylated protein in 40-S ribosomal subunits, the other is an acidic protein.  相似文献   

16.
Bovine liver mitochondrial translational initiation factor 2 (IF-2mt) has been purified to near homogeneity. The scheme developed results in a 24,000-fold purification of the factor with about 26% recovery of activity. SDS-polyacrylamide gel electrophoresis indicates that IF-2mt has a subunit molecular mass of 85 kDa. IF-2mt promotes the binding of formyl(f)Met-tRNA to mitochondrial ribosomes but is inactive with the nonformylated derivative. IF-2mt is active on chloroplast 30 S ribosomal subunits, but IF-2chl has no activity in promoting fMet-tRNA binding to animal mitochondrial ribosomes. IF-2mt is sensitive to elevated temperatures and is inactivated by treatment with N-ethylmaleimide. It is partially protected from heat and N-ethylmaleimide inactivation by the presence of either GTP or GDP suggesting that guanine nucleotides may bind to this factor directly. The binding of fMet-tRNA to mitochondrial ribosomes requires the presence of GTP and is inhibited by GDP. DeoxyGTP is very effective in replacing GTP in promoting fMet-tRNA binding to ribosomes and some activity is also observed with ITP. No activity is observed with ATP, CTP, or UTP. Nonhydrolyzable analogs of GTP can promote formation of both 28 S and 55 S initiation complexes indicating that GTP hydrolysis is not required for subunit joining in the animal mitochondrial system.  相似文献   

17.
The AUG-dependent formation of an 80 S ribosomal initiation complex was studied using purified rabbit reticulocyte initiation factors radiolabeled by reductive methylation. The radiolabeled initiation factors were as biologically active as untreated factors. Reaction mixtures containing a variety of components (AUG, GTP, Met-tRNAf, initiation factors, and 40 S and 60 S ribosomal subunits) were incubated at 30 degrees C and then analyzed on linear sucrose gradients for the formation of ribosomal complexes. The results show that both eukaryotic initiation factor (eIF)-3 and the ternary complex (eIF-2.GTP.Met-tRNAf) bind independently to the 40 S subunit and each of these components enhances the binding of the other. All of the polypeptides of eIF-2 and eIF-3 participate in this binding. Formation of an 80 S ribosomal complex requires eIF-5 and 60 S subunits in a reaction that is stimulated by eIF-4C. Both eIF-2 and eIF-3 are released from the 40 S preinitiation complex during formation of the 80 S initiation complex. Release of eIF-2 and eIF-3 does not occur and 80 S ribosomal complexes are not formed if GTP is replaced by a nonhydrolyzable analog such as guanosine 5'-O3-(1,2-mu-imido)triphosphate. Despite a variety of attempts, it has not yet been possible to demonstrate binding of eIF-4C, eIF-4D, or eIF-5 to either 40 S or 80 S ribosomal complexes.  相似文献   

18.
We have used an in vitro translation initiation assay to investigate the requirements for the efficient transfer of Met-tRNAf (as Met-tRNAf.eIF2.GTP ternary complex) to 40 S ribosomal subunits in the absence of mRNA (or an AUG codon) to form the 40 S preinitiation complex. We observed that the 17-kDa initiation factor eIF1A is necessary and sufficient to mediate nearly quantitative transfer of Met-tRNAf to isolated 40 S ribosomal subunits. However, the addition of 60 S ribosomal subunits to the 40 S preinitiation complex formed under these conditions disrupted the 40 S complex resulting in dissociation of Met-tRNAf from the 40 S subunit. When the eIF1A-dependent preinitiation reaction was carried out with 40 S ribosomal subunits that had been preincubated with eIF3, the 40 S preinitiation complex formed included bound eIF3 (40 S.eIF3. Met-tRNAf.eIF2.GTP). In contrast to the complex lacking eIF3, this complex was not disrupted by the addition of 60 S ribosomal subunits. These results suggest that in vivo, both eIF1A and eIF3 are required to form a stable 40 S preinitiation complex, eIF1A catalyzing the transfer of Met-tRNAf.eIF2.GTP to 40 S subunits, and eIF3 stabilizing the resulting complex and preventing its disruption by 60 S ribosomal subunits.  相似文献   

19.
Ternary complex formation between [3H]Met-tRNAf, [14C]H3-eIF-2, and GTP was measured on nitrocellulose filters. It is shown that [3H]Met-tRNAf and [14C]H3-eIF-2 are present on the filter in equimolar amounts when ATP, creatine phosphate, and creatine kinase are included in the reaction mixture. Under these conditions the factor is 100% active. With small amounts of factor significant losses occur due to adsorption to the wall of the reaction vessels, resulting in seemingly low activities of eIF-2. These losses can be prevented by the presence of "stimulatory" proteins, which enhance the recovery of both [3H]Met-tRNAf and [14C]H3-eIF-2 on the filter but do not alter their ratio.  相似文献   

20.
Effects of guanine nucleotides on the adenylate cyclase activity of thyroid plasma membranes were investigated by monitoring metabolism of the radiolabeled nucleotides by thin-layer chromatography (TLC). When ATP was used as substrate with a nucleotide-regeneratign system, TSH stimulated the adenylate cyclase activity in the absence of exogenous guanine nucleotide. Addition of GTP and GDP equally enhanced the TSH stimulation. Effects of GTP and GDP were indistinguishable in regard to their inhibitory effects on NaF-stimulated activities. The results from TLC suggested that GDP could be converted to GTP by a nucleotide-regenerating system. Even in the absence of nucleotide-regenerating system, addition of GDP to the adenylate cyclase assay mixture int he parallel decrease in ATP levels and formation of GTP indicating that thyroid plasma membrane preparatiosn possessed a transphosphorylating activity. When an ATP analog, App[NH]p, was used as substrate without a nucleotide-regenerating system, no conversion of GDP to GTP was observed. Under such conditions, TSH did not stimulate the adenylate cyclase activity unless exogenous GTP or Gpp[NH]p was added. GDP no longer supported TSH stimulation and caused a slight decrease in the activity. GDP was less inhibitory than Gpp(NH)p to the NaF-stimulated adenylate cyclase activity. These results suggest: (1) TSH stimulation of thyroid adenylate cyclase is absolutely dependent on the regulatory nucleotides. (2) In contrst to GTP, GDP cannot support the coupling of the receptor-TSH complex to the catalytic componenet of adenylate cyclase. (3) The nucleotide regulatory site is more inhibitory to the stimulation of the enzyme by NaF when occupied by Gpp[NH]p than GDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号