首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of hydrogen production by a hydrogenase impaired mutant strain of Anabaena variabilis in outdoor culture was studied. A computer-controlled rooftop (outdoor) tubular photobioreactor (4.35 L) was assembled. H(2) production rates by A. variabilis PK84 grown in CO(2) + air in the photobioreactor were measured together with other parameters such as temperature, irradiance, pH, dry biomass weight, and pO(2), and Chl a concentrations during summer months of 1998 and 1999. Efficiencies of light energy bioconversion to H(2) energy and energy accumulated in biomass were calculated. The influence of irradiance, temperature, and mode of cultivation on H(2) production and efficiency of light energy bioconversion were evaluated. The culture produced up to 1.1 L H(2) day(-1) PhBR(-1). The efficiency of light energy to H(2) energy bioconversion on some days was 0.094%. However, the conditions for maximum H(2) photoproduction and for maximum efficiency of light energy to H(2) energy bioconversion were not the same. A. variabilis PK84 could produce hydrogen for prolonged periods (up to 40 days) without injection of fresh inoculum. During this period photobioreactor produced 24.5 L of H(2). Possibilities for increasing the efficiency of light energy conversion are discussed.  相似文献   

2.
Hydrogen production by Anabaena variabilis ATCC 29413 and of its mutant PK84, grown in batch cultures, was studied in a photobioreactor. The highest volumetric H(2) production rates of native and mutant strains were found in cultures grown at gradually increased irradiation. The native strain evolved H(2) only under an argon atmosphere with the actual rate as high as the potential rate (measured in small vials under optimal conditions). In this case 61% of oxygenic photosynthesis was used for H(2) production. In contrast the mutant PK84 produced H(2) during growth under CO(2)-enriched air. Under these conditions at the maximum rate of H(2) production (10 mL h(-1) L(-1)), 13% of oxygenic photosynthesis was used for H(2) production and the actual H(2) production was only 33% of the potential. Under an atmosphere of 98% argon + 2% CO(2) actual H(2) production by mutant PK84 was 85% of the potential rate and 66% of oxygenic photosynthesis was used for H(2) production. Hydrogen production under argon + CO(2) by the mutant was strictly light-dependent with saturation at about 300 microE m(-2) s(-1). However, the rate of photosynthesis was not saturated at this irradiation. At limiting light intensities (below 250 microE m(-2) s(-1)) 33-58% of photosynthesis was used for H(2) production. Hydrogen evolution by PK84 under air + 2% CO(2) was also stimulated by light; but was not saturated at 332 microE m(-2) s(-1) and did not cease completely in darkness. The rate of oxygen photoevolution was also not saturated. A mechanism for increasing cyanobacterial hydrogen production is proposed.  相似文献   

3.
朱瑞艳  林涛 《微生物学通报》2009,36(12):1939-1943
本研究设计了一种2 L分体式管式光合反应器, 并研究了深红红螺菌(Rhodospirillum rubrum)吸氢酶缺失突变株在该反应器中分别利用人工光源(持续光照与光暗交替)和自然光的产氢规律。结果表明在人工光照条件下R. rubrum的产氢可维持5 d, 持续光照和光暗交替条件下(12 h: 12 h)的氢产量可分别达到5752 mL/PBR ± 158 mL/PBR和5012 mL/PBR ± 202 mL/PBR; 自然光条件下, 最适产氢光照强度为30000 Lux~40000 Lux; 在此光照条件下, R. rubrum产氢可维持6 d~ 10 d, 最高氢产量可达到2800 mL/PBR。尽管利用自然光的氢产量比利用人工光源氢产量低, 但是利用自然光的产氢比较经济, 并且该光合产氢系统操作简单, 该工艺有望开发为低成本的光合细菌产氢技术。  相似文献   

4.
The rate of hydrogen production by the marine nonsulfur photosynthetic bacterium, Rhodovulum sp., increased with increasing light intensity. A light intensity of 1800 W/m(2) hydrogen production rate was achieved at the rate of 9.4 micromol/mg dry weight/h. The hydrogen production of this strain was enhanced by the addition of a small amount of oxygen (12 micromol O(2)/reactor). Intracellular ATP content was most efficiently accumulated under microaerobic, dark conditions. Hydrogen production rate by Rhodovulum sp. was investigated using a double-phase photobioreactor consisting of light and dark compartments. This rate was compared with data obtained using a conventional photobioreactor. Rhodovulum sp. produced hydrogen at a rate of 0.38+/-0.03 micromol/mg dry weight/h under microaerobic conditions using the double-phase photobioreactor. The hydrogen production rate was four times greater under microaerobic conditions, as compared with anaerobic conditions using either type of photobioreactor. Hydrogen production using a double-phase photobioreactor was demonstrated continuously at the same rate for 150 h.  相似文献   

5.
The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii was studied in situ using either long- or short-term experiments, or alternatively, with samples withdrawn from the photobioreactor. Overall hydrogen production by S-deprived culture was shown to depend on the light intensity and to exhibit regions of light limitation and light inhibition. The optimal incident light intensity for hydrogen production was independent of the method of sulfur deprivation or the initial acetate concentration in the medium (12-34 mM). However, it varied with the Chl concentration and the thickness of the photobioreactor. To calculate the average light intensity in the photobioreactor under different experimental conditions, a special mathematics approach was developed. The optimal average light intensity for H(2) production appeared to be 30-40 microE m(-2)s(-1) and was independent of the Chl or acetate concentrations and the method of S deprivation. The inhibitory effect of high light intensity was related to the enhanced O(2) evolution activity during the photosynthetic stage of sulfur deprivation and to the high activity of photosystem II at the beginning of the H(2)-production phase. Data support the major role of photosystem II in supplying reductants through photosystem I to the hydrogenase throughout the H(2)-production phase.  相似文献   

6.
The optimal temperature and illumination photoperiod requirements for the phototrophic growth of a novel microplantlet suspension culture derived from the macrophytic marine red alga Agardhiella subulata were determined. The optimal growth temperature was 24 degrees C. The effects of illumination light-dark (LD) photoperiod (hour of light:hours of darkness within a 24 h cycle) on biomass production was studied within a bubble-column photobioreactor. The 4.5 cm diameter photobioreactor was maintained at near-saturation conditions with respect to light flux (38 mciromol photons m(-2) s(-1)), nutrient medium delivery (20% nutrient replacement per day), and CO(2) delivery (0.35 mmol CO(2) L(-1) h(-1)) so that the cumulative effects of photodamage on the cell density versus time curve at photoperiods approaching continuous light could be observed. Biomass production was maximized at 16:8 LD, where biomass densities exceeding 3.6 g dry cell mass L(-1) were achieved after 60 days in culture. Biomass production was proportional to photoperiod at low fractional photoperiods (< or =10:14 LD), but high fractional photoperiods approaching continuous light (> or = 20:4 LD) shut down biomass production. Biomass production versus time profiles under resource-saturated cultivation conditions were adequately described by a cumulative photodamage growth model, which coupled reversible photodamage processes to the specific growth rate. Under light-saturated growth conditions, the rate constant for photodamage was kd = 1.17 +/- 0.28 day(-1) (+/-1.0 SE), and the rate constant for photodamage repair was kr = 5.12 +/- 0.95 day(-1) (+/-1.0 SE) at 24 degrees C.  相似文献   

7.
A marine microalga Gyrodinium impudicum strain KG03 produced sulfated exopolysaccharide designated as p-KG03, which showed a strong antiviral activity against encephalomyocarditis virus (EMCV). To optimize culture conditions for the production of p-KG03, mineral salts, vitamins, plant growth hormones, temperature, pH and light conditions were examined. From this study, M-KG03 medium for the maximum production of p-KG03 was suggested as follows; NH(4)Cl 75 microM, NaH(3)PO(4) 200 microM, NaHCO(3) 50 microM, Na(2)SO(4) 10 microM, FeCl(2) x 6H(2)O 10 microM, MnCl(2) x 4H(2)O 0.1 microM, vitamin B(12) 0.75 microg, naphthalene acetic acid (NAA) 7.5 microg and myo-inositol 200 mg per liter of aged sea water. The optimal temperature and pH were 22.5 degrees C and 8.0, respectively. The optimal light conditions of intensity and period were 150 microE m(-2) s(-1) and 16:8 h light:dark cycle. Finally, the cell growth and p-KG03 production were measured in one liter of M-KG03 medium with 1% CO(2) and 50 ml min(-1) of airflow using two liters airlift balloon type photobioreactor (ABTPR). At these optimal conditions, p-KG03 production and cell growth were 134.6+/-5.9 mg l(-1) and 123,076+/-1,597 cells ml(-1), respectively, representing a 7.7 and 5.1 times compared with f/2 medium with Erlenmeyer flask culture (p-KG03 production 17.5+/-1.3 mg l(-1) and cell growth 24,311+/-1,291 cells ml(-1)).  相似文献   

8.
9.
The microalga incorporated photobioreactor is a highly efficient biological system for converting CO2 into biomass. Using microalgal photobioreactor as CO2 mitigation system is a practical approach for elimination of waste gas from the CO2 emission. In this study, the marine microalga Chlorella sp. was cultured in a photobioreactor to assess biomass, lipid productivity and CO2 reduction. We also determined the effects of cell density and CO2 concentration on the growth of Chlorella sp. During an 8-day interval cultures in the semicontinuous cultivation, the specific growth rate and biomass of Chlorella sp. cultures in the conditions aerated 2-15% CO2 were 0.58-0.66 d(-1) and 0.76-0.87 gL(-1), respectively. At CO2 concentrations of 2%, 5%, 10% and 15%, the rate of CO2 reduction was 0.261, 0.316, 0.466 and 0.573 gh(-1), and efficiency of CO2 removal was 58%, 27%, 20% and 16%, respectively. The efficiency of CO2 removal was similar in the single photobioreactor and in the six-parallel photobioreactor. However, CO2 reduction, production of biomass, and production of lipid were six times greater in the six-parallel photobioreactor than those in the single photobioreactor. In conclusion, inhibition of microalgal growth cultured in the system with high CO2 (10-15%) aeration could be overcome via a high-density culture of microalgal inoculum that was adapted to 2% CO2. Moreover, biological reduction of CO2 in the established system could be parallely increased using the photobioreactor consisting of multiple units.  相似文献   

10.
A marine cyanobacterium, Anabaena sp. TU37-1, exhibited stable production of hydrogen and oxygen in closed vessels. About 8.4 and 4.3 mL (at atmospheric pressure) of hydrogen and oxygen accumulated, respectively, in flasks with 20 mL gas phase during 48 h incubation. Thus, concentration of H(2) and O(2) became 26 and 13% of the gas phase, respectively. Duration of hydrogen production was prolonged by the periodic gas replacement in the reaction vessel. The conversion efficiencies of photosynthetically active radiation (fluorescent light, 22 W/m(2)) to hydrogen were 2.4 and 2.2% during the initial 12- and 24-h incubation periods, respectively. (c) 1995 John Wiley & Sons, Inc.  相似文献   

11.
Frequency of heterocytes and nitrogenase activity (NA) under light and dark cultivation conditions was determined in 12 cyanobacterial strains isolated from various soil habitats. In spite of a high variability, significant differences in NA among the strains were found in response of light and dark cultivation. Relatively high NA (9.9-15.3 micromol/h C2H4 per g fresh mass) under light conditions and basal NA after 12 h of dark cultivation were detected in Anabaena, Nodularia, Tolypothrix, and 1 of Cylindrospermum strains. On the other hand, significantly lower NA (0.76-5.4 micromol/h C2H4 per g fresh mass) was found under light conditions in Trichormus, Nostoc and another Cylindrospermum strain; the activity completely disappeared after 12 h of dark cultivation. NA values were not directly related to the frequency of the heterocytes. The total NA of cyanobacterial colony was found to be probably independent of the number and/or position of heterocytes. Remarkable differences in NA between strains isolated from cultivated fields and strains originating from natural or non-cultivated soils were found.  相似文献   

12.
Several species of microalgae and phototrophic bacteria are able to produce hydrogen under certain conditions. A range of different photobioreactor systems have been used by different research groups for lab-scale hydrogen production experiments, and some few attempts have been made to upscale the hydrogen production process. Even though a photobioreactor system for hydrogen production does require special construction properties (e.g., hydrogen tight, mixing by other means than bubbling with air), only very few attempts have been made to design photobioreactors specifically for the purpose of hydrogen production. We have constructed a flat panel photobioreactor system that can be used in two modes: either for the cultivation of phototrophic microorganisms (upright and bubbling) or for the production of hydrogen or other anaerobic products (mixing by “rocking motion”). Special emphasis has been taken to avoid any hydrogen leakages, both by means of constructional and material choices. The flat plate photobioreactor system is controlled by a custom-built control system that can log and control temperature, pH, and optical density and additionally log the amount of produced gas and dissolved oxygen concentration. This paper summarizes the status in the field of photobioreactors for hydrogen production and describes in detail the design and construction of a purpose-built flat panel photobioreactor system, optimized for hydrogen production in terms of structural functionality, durability, performance, and selection of materials. The motivations for the choices made during the design process and advantages/disadvantages of previous designs are discussed.  相似文献   

13.
Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.  相似文献   

14.
聚球藻7002在光生物反应器中的光自养培养   总被引:2,自引:0,他引:2  
通过对聚球藻7002在光生物反应器中的培养,研究了光强在聚球藻7002培养液中的衰减规律,得到了培养过程光强随藻细胞浓度和光程距离变化的关系式,即I=I0exp[-(-0.0239+0.0777OD750)·L]。并对培养过程特性及培养温度、外加CO2浓度和光照强度对藻细胞生长的影响进行了较为详细的研究,得到了反应器中较为适宜的聚球藻7002的培养条件,藻细胞培养密度达到3.4g/L(干重),体积产率达到0.57g/(L·d)的较高水平。  相似文献   

15.
Previous studies showed that cell suspensions of unicellular nondiazotrophic cyanobacterium G. alpicola grown under nitrate-limiting conditions intensively produces H2 via fermentation of endogenous glycogen with hydrogen yield more then 90% of theoretical maximum (3.8 mol H2 per mol glucose). H2 production is realized by a Hox hydrogenase on the stages of NAD(P)H generation. Exploiting this property, the two-stage cyclic system for sustained hydrogen production was developed using a photobioreactor (PhBR) with G. alpicola immobilized on glass fiber TR-0.3. Immobilization of the cells on the matrix occurred during growth directly in PhBR operated in continuous mode; the density of culture immobilized achieved 37 g Chl alpha cm(-2). The first stage of the cycle was the photosynthetic incubations of G. alpicola in the flow of the culture medium, which contained limiting concentrations of nitrate for efficient glycogen accumulation and activation of hydrogenase. The second stage was the fermentation of glycogen, with H2 production realized in darkness with continuous Ar sparging and without medium flow. Standardization of optimal parameters for both stages provided a stable cyclic regime of the system: photosynthesis (24 hours)-fermentation (24 hours). The total amount of H2 evolved in one cycle was 957.6 mL L(-1)(matrix), and the overage rate of H2 production during the cycle (48 hours) was about 20 mL h(-1) L(-1)(matrix). Ten consequent cycles was carried out in this regime with reproducible H2 production, although PhBR with the same sample of immobilized culture was operated over a period of more then three months.  相似文献   

16.
Outdoor culture of the thermophilic cyanobacterium Synechocystis aquatilis SI-2 with a vertical flat-plate photobioreactor (VFPP) was studied during the period of January to August of 1999 in the northern region of Japan (Kamaishi, Iwate, 39 degrees N, 142 degrees E). The aim of this study was to investigate the CO2 fixation ability of the VFPP device under various irradiation conditions. An average biomass productivity of over 30 g m(-2) day(-1), which corresponds to a CO2 fixation rate of 50 g m(-2) day(-1), was achieved during this period with a 192-l scale culture. The effects on biomass productivity of the light path, height of the reactor, cell concentration and irradiation were also investigated. Variation of the optimal cell concentration to achieve the highest productivity for outdoor operation is discussed. A cell concentration of 1-2 g l(-1) was found to be most suitable for the irradiation range of 1-12 MJ m(-2) day(-1) under the experimental conditions used.  相似文献   

17.
This study proposes a novel double-region photobioreactor to simplify the commercial two-stage process of astaxanthin production by the cultivation of Haematococcus pluvialis. The feasibility of the double-region photobioreactor has been investigated and found to achieve high biomass yield in the inner core region and simultaneous astaxanthin accumulation in the outer jacket region. Among many environmental factors, light condition and nitrate level were manipulated for selective cell growth and astaxanthin production. In the outer jacket region, efficient astaxanthin production was accomplished by excessive irradiation (770+/-20 microE m(-2)s(-1)) and nitrate starvation, resulting in a dramatic increase of astaxanthin productivity (357 mg l(-1)). Meanwhile, attenuated light energy (40+/-3 microE m(-2)s(-1)) and sufficient nitrates were supplied to the vegetative cells in the inner core region, which continued to grow to a high cell concentration of 4.0 x 10(5) cells ml(-1). The sequential batch run was performed by utilizing the high-density vegetative cells as inoculum for the next batch run. The cultivation results exhibited similar trends as the previous run, reaching high cell density (4.3 x 10(5) cells ml(-1)) in the inner core region and high astaxanthin content (5.79% on a dry weight basis) in the outer jacket region. The present study indicates that the double-region photobioreactor and its method of operation possess a good potential for commercial production of astaxanthin by H. pluvialis.  相似文献   

18.
One factor limiting biosolar hydrogen (H(2)) production from cyanobacteria is electron availability to the hydrogenase enzyme. In order to optimize 24-h H(2) production this study used Response Surface Methodology and Q2, an optimization algorithm, to investigate the effects of five inhibitors of the photosynthetic and respiratory electron transport chains of Synechocystis sp. PCC 6803. Over 3 days of diurnal light/dark cycling, with the optimized combination of 9.4 mM KCN (3.1 μmol 10(10) cells(-1)) and 1.5 mM malonate (0.5 μmol 10(10) cells(-1)) the H(2) production was 30-fold higher, in EHB-1 media previously optimized for nitrogen (N), sulfur (S), and carbon (C) concentrations (Burrows et al., 2008). In addition, glycogen concentration was measured over 24 h with two light/dark cycling regimes in both standard BG-11 and EHB-1 media. The results suggest that electron flow as well as glycogen accumulation should be optimized in systems engineered for maximal H(2) output.  相似文献   

19.
Circadian changes of protein tyrosine phosphorylation in the hypothalamic suprachiasmatic nucleus have been studied using rats maintained under 12-h light/ 12-h dark cycles as well as constant dark conditions. We found that tyrosine phosphorylation of BIT (brain immunoglobulin-like molecule with tyrosine-based activation motifs), a transmembrane glycoprotein of 90-95 kDa, was higher in the light period than in the dark period and was increased after light exposure in the dark period. Similar changes in tyrosine phosphorylation were observed under constant dark conditions, but its amplitude was weaker than that in 12-h light/12-h dark cycles. As the tyrosine-phosphorylated form of BIT is able to bind to the Src homology 2 domain of a protein tyrosine phosphatase, SHP-2, we examined association of these proteins in suprachiasmatic nucleus extracts and found that SHP-2 was coprecipitated with BIT in parallel with its tyrosine phosphorylation. These results suggest that tyrosine phosphorylation of BIT might be involved in light-induced entrainment of the circadian clock.  相似文献   

20.
响应面法优化自养小球藻产生物柴油油脂   总被引:5,自引:1,他引:4  
利用响应面法对小球藻(Chlorella vulgaris)在2L气升式生物反应器中对自养产生物柴油油脂的培养条件进行了优化。首先用Plackett-Burman方法对10个相关影响因素的效应进行评价并筛选出对产油有显著影响的3个因素:KNO3浓度、温度和CO2浓度;再用最陡爬坡实验逼近最大产油区域;最后由中心组合实验及响应面分析确定了影响产油主要因素的最佳条件为:KNO3浓度0.31g/L,温度26.5℃,CO2浓度6.80%,最高产油量达到0.42g/L,比优化前提高了近2倍。优化后,在10L气升式生物反应器中进行了扩大培养。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号