首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aerobic respiratory chain of the Gram-positive Corynebacterium glutamicum involves a bc(1) complex with a diheme cytochrome c(1) and a cytochrome aa(3) oxidase but no additional c-type cytochromes. Here we show that the two enzymes form a supercomplex, because affinity chromatography of either strep-tagged cytochrome b (QcrB) or strep-tagged subunit I (CtaD) of cytochrome aa(3) always resulted in the copurification of the subunits of the bc(1) complex (QcrA, QcrB, QcrC) and the aa(3) complex (CtaD, CtaC, CtaE). The isolated bc(1)-aa(3) supercomplexes had quinol oxidase activity, indicating functional electron transfer between cytochrome c(1) and the Cu(A) center of cytochrome aa(3). Besides the known bc(1) and aa(3) subunits, few additional proteins were copurified, one of which (CtaF) was identified as a fourth subunit of cytochrome aa(3). If either of the two CXXCH motifs for covalent heme attachment in cytochrome c(1) was changed to SXXSH, the resulting mutants showed severe growth defects, had no detectable c-type cytochrome, and their cytochrome b level was strongly reduced. This indicates that the attachment of both heme groups to apo-cytochrome c(1) is not only required for the activity but also for the assembly and/or stability of the bc(1) complex.  相似文献   

2.
Electrophoresis of a Corynebacterium glutamicum membrane preparation in the presence of sodium dodecyl sulfate, followed by staining for peroxidase activity (heme staining), showed only one band at about 28 kDa. This 28 kDa protein was purified from C. glutamicum membranes by chromatography in the presence of decylglucoside using DEAE-Toyopearl and hydroxylapatite columns, as the sole c-type cytochrome in the bacterium. The cytochrome showed an alpha band at 551 nm, and its E(m, 7) was about 210 mV. A QcrCAB operon encoding the subunits of a putative quinol cytochrome c reductase was found 3'-downstream of ctaE encoding subunit III of cytochrome aa(3) in the C. glutamicum genome. The deduced amino acid sequence of qcrC, composed of 283 amino acid residues, contained two heme C-binding motifs and was in agreement with partial peptide sequences obtained from the 28 kDa protein after V8 protease digestion. We propose to name this protein cytochrome cc. The presence of cytochrome cc is a common feature of high G+C content Gram-positive bacteria, since we could confirm this protein by electrophoresis; homologous QcrCAB operons are also known in Mycobacterium and Streptomyces. QcrA and qcrB of C. glutamicum encode the Rieske Fe-S protein and cytochrome b, respectively, although these proteins were not co-purified with cytochrome cc. The phylogenetic tree of cytochromes b and b(6) show that C. glutamicum cytochrome b, along with those of other bacteria in the high G+C group, is rather different from the Bacillus counterparts, but highly similar to the Deinococci and Thermus cytochromes. This indicates that there is a fourth group of bacteria in addition to the three clades: proteobacterial cytochrome b, cyanobacterial b(6) and green sulfur-low G+C Gram-positive bacteria.  相似文献   

3.
4.
Corynebacterium glutamicum possesses two terminal oxidases, cytochrome aa3 and cytochrome bd. Cytochrome aa3 forms a supercomplex with the cytochrome bc1 complex, which contains an unusual diheme cytochrome c1. Both the bc1 -aa3 supercomplex and cytochrome bd transfer reducing equivalents from menaquinol to oxygen; however, they differ in their proton translocation efficiency by a factor of three. Here, we analyzed the role of cytochrome bd for growth and lysine production. When cultivated in glucose minimal medium, a cydAB deletion mutant of C. glutamicum ATCC 13032 grew like the wild type in the exponential phase, but growth thereafter was inhibited, leading to a biomass formation 40% less than that of the wild type. Constitutive overproduction of functional cytochrome bd oxidase in ATCC 13032 led to a reduction of the growth rate by approximately 45% and of the maximal biomass by approximately 35%, presumably as a consequence of increased electron flow through the inefficient cytochrome bd oxidase. In the L-lysine-producing C. glutamicum strain MH20-22B, deletion of the cydAB genes had only minor effects on growth rate and biomass formation, but lysine production was increased by approximately 12%. Thus, the respiratory chain was shown to be a target for improving amino acid production by C. glutamicum.  相似文献   

5.
The ctaD gene encoding subunit I of the aa3-type cytochrome c oxidase from Rhodobacter sphaeroides has been cloned. The gene encodes a polypeptide of 565 residues which is highly homologous to the sequences of subunit I from other prokaryotic and eukaryotic sources, e.g. 51% identity with that from bovine, and 75% identity with that from Paracoccus denitrificans. The ctaD gene was deleted from the chromosome of R. sphaeroides, resulting in a strain that spectroscopically lacks cytochrome a. This strain maintains about 50% of the cytochrome c oxidase activity of the wild-type strain owing to the presence of an alternate o-type cytochrome c oxidase. The aa3-type oxidase was restored by complementing the chromosomal deletion with a plasmid-borne copy of the ctaD gene. This system is well suited for site-directed mutagenesis probing of the structure and function of cytochrome c oxidase.  相似文献   

6.
Further genetic evidence is provided here that Bradyrhizobium japonicum possesses a mitochondria-like electron-transport pathway: 2[H]----UQ----bc1----c----aa3----O2. Two Tn5-induced mutants, COX122 and COX132, having cytochrome c oxidase-negative phenotypes, were obtained and characterized. Mutant COX122 was defective in a novel gene, named cycM, which was responsible for the synthesis of a c-type cytochrome with an Mr of 20,000 (20K). This 20K cytochrome c appeared to catalyse electron transport from the cytochrome bc1 complex to the aa3-type terminal oxidase and, unlike mitochondrial cytochrome c, was membrane-bound in B. japonicum. The Tn5 insertion of mutant COX132 was localized in coxA, the structural gene for subunit I of cytochrome aa3. This finding also led to the cloning and sequencing of the corresponding wild-type coxA gene that encoded a 541-amino-acid protein with a predicted Mr of 59,247. The CoxA protein shared about 60% sequence identity with the cytochrome aa3 subunit I of mitochondria. The B. japonicum cycM and coxA mutants were able to fix nitrogen in symbiosis with soybean (Fix+). In contrast, mutants described previously which lacked the bc1 complex did not develop into endosymbiotic bacteroids and were thus Fix-. The data suggest that a symbiosis-specific respiratory chain exists in B. japonicum in which the electrons branch off at the bc1 complex.  相似文献   

7.
K A Gray  E Davidson  F Daldal 《Biochemistry》1992,31(47):11864-11873
Site-directed mutagenesis was used to investigate which of the highly conserved methionine residues (M183 and M205) provides the sixth axial ligand to the heme Fe in the cyt c1 subunit of the bc1 complex from the bacterium Rhodobacter capsulatus. These residues were changed to leucine (cM183L) and valine (cM205V). Two additional mutants were constructed, 1 in which a stop codon was inserted at M205 (cM205*) and the second in which 127 amino acids were deleted between the signal sequence and the putative C-terminal transmembrane alpha-helix (c delta SfuI). Only cM205V grew photosynthetically, and membranes isolated from this strain catalyzed quinol-dependent reduction of cyt c in amounts similar to that in a wild-type strain. Even though cM183L could not grow photosynthetically, it contained all the appropriate polypeptides and cofactors of the bc1 complex, as shown by SDS-PAGE and optical difference spectroscopy of intact membrane particles. Neither of the two deletion mutants contained a stable complex. Flash absorption spectroscopy using chromatophores showed no cytochrome c rereduction after oxidation by the reaction center in cM183L. The bc1 complex from each strain was isolated and characterized. Oxidation reduction midpoint potential titrations revealed that cyt c1 from cM183L had a dramatically shifted Em value (delta Em = -390 mV) compared with wild type and cM205V. While the optical absorption spectrum of cyt c1 from cM183L suggested that the c-type heme was low-spin, nonetheless it was able to react with the exogenous ligand carbon monoxide. The overall data support that M183, and not M205, is the sixth ligand to the heme Fe of cyt c1 of the bc1 complex.  相似文献   

8.
Zara V  Conte L  Trumpower BL 《The FEBS journal》2007,274(17):4526-4539
We have examined the status of the cytochrome bc(1) complex in mitochondrial membranes from yeast mutants in which genes for one or more of the cytochrome bc(1) complex subunits were deleted. When membranes from wild-type yeast were resolved by native gel electrophoresis and analyzed by immunodecoration, the cytochrome bc(1) complex was detected as a mixed population of enzymes, consisting of cytochrome bc(1) dimers, and ternary complexes of cytochrome bc(1) dimers associated with one and two copies of the cytochrome c oxidase complex. When membranes from the deletion mutants were resolved and analyzed, the cytochrome bc(1) dimer was not associated with the cytochrome c oxidase complex in many of the mutant membranes, and membranes from some of the mutants contained a common set of cytochrome bc(1) subcomplexes. When these subcomplexes were fractionated by SDS/PAGE and analyzed with subunit-specific antibodies, it was possible to recognize a subcomplex consisting of cytochrome b, subunit 7 and subunit 8 that is apparently associated with cytochrome c oxidase early in the assembly process, prior to acquisition of the remaining cytochrome bc(1) subunits. It was also possible to identify a subcomplex consisting of subunit 9 and the Rieske protein, and two subcomplexes containing cytochrome c(1) associated with core protein 1 and core protein 2, respectively. The analysis of all the cytochrome bc(1) subcomplexes with monospecific antibodies directed against Bcs1p revealed that this chaperone protein is involved in a late stage of cytochrome bc(1) complex assembly.  相似文献   

9.
An enzyme complex with ubiquinol-cytochrome c oxidoreductase, cytochrome c oxidase, and ubiquinol oxidase activities was purified from a detergent extract of the plasma membrane of aerobically grown Paracoccus denitrificans. This ubiquinol oxidase consists of seven polypeptides and contains two b cytochromes, cytochrome c1, cytochrome aa3, and a previously unreported c-type cytochrome. This c-type cytochrome has an apparent Mr of 22,000 and an alpha absorption maximum at 552 nm. Retention of this c cytochrome through purification presumably accounts for the independence of ubiquinol oxidase activity on added cytochrome c. Ubiquinol oxidase can be separated into a 3-subunit bc1 complex, a 3-subunit c-aa3 complex, and a 57-kDa polypeptide. This, together with detection of covalently bound heme and published molecular weights of cytochrome c1 and the subunits of cytochrome c oxidase, allows tentative identification of most of the subunits of ubiquinol oxidase with the prosthetic groups present. Ubiquinol oxidase contains cytochromes corresponding to those of the mitochondrial bc1 complex, cytochrome c oxidase complex, and a bound cytochrome c. Ubiquinol-cytochrome c oxidoreductase activity of the complex is inhibited by inhibitors of the mitochondrial bc1 complex. Thus it seems likely that the pathway of electron transfer through the bc1 complex of ubiquinol oxidase is similar to that through the mitochondrial bc1 complex. The number of polypeptides present is less than half the number in the corresponding mitochondrial complexes. This structural simplicity may make ubiquinol oxidase from P. denitrificans a useful system with which to study the mechanisms of electron transfer and energy transduction in the bc1 and cytochrome c oxidase sections of the respiratory chain.  相似文献   

10.
Corynebacterium glutamicum is an aerobic bacterium that requires oxygen as exogenous electron acceptor for respiration. Recent molecular and biochemical analyses together with information obtained from the genome sequence showed that C. glutamicum possesses a branched electron transport chain to oxygen with some remarkable features. Reducing equivalents obtained by the oxidation of various substrates are transferred to menaquinone via at least eight different dehydrogenases, i.e. NADH dehydrogenase, succinate dehydrogenase, malate:quinone oxidoreductase, pyruvate:quinone oxidoreductase, D-lactate dehydrogenase, L-lactate dehydrogenase, glycerol-3-phosphate dehydrogenase and L-proline dehydrogenase. All these enzymes contain a flavin cofactor and, except succinate dehydrogenase, are single subunit peripheral membrane proteins located inside the cell. From menaquinol, the electrons are passed either via the cytochrome bc(1) complex to the aa(3)-type cytochrome c oxidase with low oxygen affinity, or to the cytochrome bd-type menaquinol oxidase with high oxygen affinity. The former branch is exceptional, in that it does not involve a separate cytochrome c for electron transfer from cytochrome c(1) to the Cu(A) center in subunit II of cytochrome aa(3). Rather, cytochrome c(1) contains two covalently bound heme groups, one of which presumably takes over the function of a separate cytochrome c. The bc(1) complex and cytochrome aa(3) oxidase form a supercomplex in C. glutamicum. The phenotype of defined mutants revealed that the bc(1)-aa(3) branch, but not the bd branch, is of major importance for aerobic growth in minimal medium. Changes of the efficiency of oxidative phosphorylation caused by qualitative changes of the respiratory chain or by a defective F(1)F(0)-ATP synthase were found to have strong effects on metabolism and amino acid production. Therefore, the system of oxidative phosphorylation represents an attractive target for improving amino acid productivity of C. glutamicum by metabolic engineering.  相似文献   

11.
C Vargas  G Wu  A E Davies    J A Downie 《Journal of bacteriology》1994,176(13):4117-4123
A Tn5-induced mutant of Rhizobium leguminosarum bv. viciae could not form nitrogen-fixing nodules on pea or vetch because of a lesion in electron transport to oxygen. The mutant lacked spectroscopically detectable cytochromes c and aa3. No proteins containing c-type cytochrome could be identified in the mutant by heme staining of proteins fractionated on polyacrylamide gels, indicating that the mutant was defective in maturation of all c-type cytochromes. The Tn5 mutation was determined to be located in a gene that was called cycY. The cycY gene product is homologous to the thioredoxin-like protein HelX involved in the assembly of c-type cytochromes in Rhodobacter capsulatus and to an open reading frame from a Bradyrhizobium japonicum gene cluster containing other genes involved in cytochrome c biogenesis. Our observations are consistent with CycY functioning as a thioredoxin that reduces cysteine residues in apocytochromes c before heme attachment.  相似文献   

12.
The cytochrome bc1 complex from bovine heart mitochondria is a multi-functional enzyme complex. In addition to electron and proton transfer activity, the complex also processes an activatable peptidase activity and a superoxide generating activity. The crystal structure of the complex exists as a closely interacting functional dimer. There are 13 transmembrane helices in each monomer, eight of which belong to cytochrome b, and five of which belong to cytochrome c1, Rieske iron-sulfur protein (ISP), subunits 7, 10 and 11, one each. The distances of 21 A between bL heme and bH heme and of 27 A between bL heme and the iron-sulfur cluster (FeS), accommodate well the observed fast electron transfers between the involved redox centers. However, the distance of 31 A between heme c1 and FeS, makes it difficult to explain the high electron transfer rate between them. 3D structural analyses of the bc1 complexes co-crystallized with the Qu site inhibitors suggest that the extramembrane domain of the ISP may undergo substantial movement during the catalytic cycle of the complex. This suggestion is further supported by the decreased in the cytochrome bc1 complex activity and the increased in activation energy for mutants with increased rigidity in the neck region of ISP.  相似文献   

13.
Zhang H  Osyczka A  Moser CC  Dutton PL 《Biochemistry》2006,45(48):14247-14255
Typically, c hemes are bound to the protein through two thioether bonds to cysteines and two axial ligands to the heme iron. In high-potential class I c-type cytochromes, these axial ligands are commonly His-Met. A change in this methionine axial ligand is often correlated with a dramatic drop in the heme redox potential and loss of function. Here we describe a bacterial cytochrome c with an unusual tolerance to the alternations in the heme ligation pattern. Substitution of the heme ligating methionine (M185) in cytochrome c1 of the Rhodobacter sphaeroides cytochrome bc1 complex with Lys and Leu lowers the redox midpoint potential but not enough to prevent physiologically competent electron transfer in these fully functional variants. Only when Met-185 is replaced with His is the drop in the redox potential sufficiently large to cause cytochrome bc1 electron transfer chain failure. Functional mutants preserve the structural integrity of the heme crevice: only the nonfunctional His variant allows carbon monoxide to bind to reduced heme, indicating a significant opening of the heme environment. This range of cytochrome c1 ligand mutants exposes both the relative resilience to sixth axial ligand change and the ultimate thermodynamic limits of operation of the cofactor chains in cytochrome bc1.  相似文献   

14.
Mutants of Rhizobium leguminosarum bv. viciae unable to respire via the cytochrome aa3 pathway were identified by the inability to oxidize N,N'-dimethyl-p-phenylenediamine. Two mutants which were complemented by cosmid pIJ1942 from an R. leguminosarum clone bank were identified. Although pea nodules induced by these mutants contained many bacteroids, no symbiotic nitrogen fixation was detected. Heme staining of cellular proteins revealed that all cytochrome c-type heme proteins were absent. These mutants lacked spectroscopically detectable cytochrome c, but cytochromes aa3 and d were present, the latter at a higher-than-normal level. DNA sequence analysis of complementing plasmids revealed four apparently cotranscribed open reading frames (cycH, cycJ, cycK, and cycL). CycH, CycJ, CycK, and CycL are homologous to Bradyrhizobium japonicum and Rhizobium meliloti proteins thought to be involved in the attachment of heme to cytochrome c apoproteins; CycK and CycL are also homologous to the Rhodobacter capsulatus ccl1 and ccl2 gene products and the Escherichia coli nrfE and nrfF gene products involved in the assembly of c-type cytochromes. The absence of cytochrome c heme proteins in these R. leguminosarum mutants is consistent with the view that the cycHJKL operon could be involved in the attachment of heme to apocytochrome c.  相似文献   

15.
The ubihydroquinone-cytochrome c oxidoreductase (or the cytochrome bc1 complex) from Rhodobacter capsulatus is composed of the Fe-S protein, cytochrome b, and cytochrome c1 subunits encoded by petA(fbcF), petB(fbcB), and petC(fbcC) genes organized as an operon. In the work reported here, petB(fbcB) was split genetically into two cistrons, petB6 and petBIV, which encoded two polypeptides corresponding to the four amino-terminal and four carboxyl-terminal transmembrane helices of cytochrome b, respectively. These polypeptides resembled the cytochrome b6 and su IV subunits of chloroplast cytochrome b6f complexes, and together with the unmodified subunits of the cytochrome bc1 complex, they formed a novel enzyme, named cytochrome b6c1 complex. This membrane-bound multisubunit complex was functional, and despite its smaller amount, it was able to support the photosynthetic growth of R. capsulatus. Upon further mutagenesis, a mutant overproducing it, due to a C-to-T transition at the second base of the second codon of petBIV, was obtained. Biochemical analyses, including electron paramagnetic spectroscopy, with this mutant revealed that the properties of the cytochrome b6c1 complex were similar to those of the cytochrome bc1 complex. In particular, it was highly sensitive to inhibitors of the cytochrome bc1 complex, including antimycin A, and the redox properties of its b- and c-type heme prosthetic groups were unchanged. However, the optical absorption spectrum of its cytochrome bL heme was modified in a way reminiscent of that of a cytochrome b6f complex. Based on the work described here and that with Rhodobacter sphaeroides (R. Kuras, M. Guergova-Kuras, and A. R. Crofts, Biochemistry 37:16280-16288, 1998), it appears that neither the inhibitor resistance nor the redox potential differences observed between the bacterial (or mitochondrial) cytochrome bc1 complexes and the chloroplast cytochrome b6f complexes are direct consequences of splitting cytochrome b into two separate polypeptides. The overall findings also illustrate the possible evolutionary relationships among various cytochrome bc oxidoreductases.  相似文献   

16.
Cytochrome f from the photosynthetic cytochrome b(6)f complex is unique among c-type cytochromes in its fold and heme ligation. The 1. 9-A crystal structure of the functional, extrinsic portion of cytochrome f from the thermophilic cyanobacterium Phormidium laminosum demonstrates that an unusual buried chain of five water molecules is remarkably conserved throughout the biological range of cytochrome f from cyanobacteria to plants [Martinez et al. (1994) Structure 2, 95-105]. Structure and sequence conservation of the cytochrome f extrinsic portion is concentrated at the heme, in the buried water chain, and in the vicinity of the transmembrane helix anchor. The electrostatic surface potential is variable, so that the surface of P. laminosum cytochrome f is much more acidic than that from turnip. Cytochrome f is unrelated to cytochrome c(1), its functional analogue in the mitochondrial respiratory cytochrome bc(1) complex, although other components of the b(6)f and bc(1) complexes are homologous. Identical function of the two complexes is inferred for events taking place at sites of strong sequence conservation. Conserved sites throughout the entire cytochrome b(6)f/bc(1) family include the cluster-binding domain of the Rieske protein and the heme b and quinone-binding sites on the electrochemically positive side of the membrane within the b cytochrome, but not the putative quinone-binding site on the electrochemically negative side.  相似文献   

17.
The cytochrome c(1) subunit of the ubihydroquinone:cytochrome c oxidoreductase (bc(1) complex) contains a single heme group covalently attached to the polypeptide via thioether bonds of two conserved cysteine residues. In the photosynthetic bacterium Rhodobacter (Rba.) capsulatus, cytochrome c(1) contains two additional cysteines, C144 and C167. Site-directed mutagenesis reveals a disulfide bond (rare in monoheme c-type cytochromes) anchoring C144 to C167, which is in the middle of an 18 amino acid loop that is present in some bacterial cytochromes c(1) but absent in higher organisms. Both single and double Cys to Ala substitutions drastically lower the +320 mV redox potential of the native form to below 0 mV, yielding nonfunctional cytochrome bc(1). In sharp contrast to the native protein, mutant cytochrome c(1) binds carbon monoxide (CO) in the reduced form, indicating an opening of the heme environment that is correlated with the drop in potential. In revertants, loss of the disulfide bond is remediated uniquely by insertion of a beta-branched amino acid two residues away from the heme-ligating methionine 183, identifying the pattern betaXM, naturally common in many other high-potential cytochromes c. Despite the unrepaired disulfide bond, the betaXM revertants are no longer vulnerable to CO binding and restore function by raising the redox potential to +227 mV, which is remarkably close to the value of the betaXM containing but loop-free mitochondrial cytochrome c(1). The disulfide anchored loop and betaXM motifs appear to be two independent but nonadditive strategies to control the integrity of the heme-binding pocket and raise cytochrome c midpoint potentials.  相似文献   

18.
It has recently become evident that many bacterial respiratory oxidases are members of a superfamily that is related to the eukaryotic cytochrome c oxidase. These oxidases catalyze the reduction of oxygen to water at a heme-copper binuclear center. Fourier transform infrared (FTIR) spectroscopy has been used to examine the heme-copper-containing respiratory oxidases of Rhodobacter sphaeroides Ga. This technique monitors the stretching frequency of CO bound at the oxygen binding site and can be used to characterize the oxidases in situ with membrane preparations. Oxidases that have a heme-copper binuclear center are recognizable by FTIR spectroscopy because the bound CO moves from the heme iron to the nearby copper upon photolysis at low temperature, where it exhibits a diagnostic spectrum. The FTIR spectra indicate that the binuclear center of the R. sphaeroides aa3-type cytochrome c oxidase is remarkably similar to that of the bovine mitochondrial oxidase. Upon deletion of the ctaD gene, encoding subunit I of the aa3-type oxidase, substantial cytochrome c oxidase remains in the membranes of aerobically grown R. sphaeroides. This correlates with a second wild-type R. sphaeroides is grown photosynthetically, the chromatophore membranes lack the aa3-type oxidase but have this second heme-copper oxidase. Subunit I of the heme-copper oxidase superfamily contains the binuclear center. Amino acid sequence alignments show that this subunit is structurally very highly conserved among both eukaryotic and prokaryotic species. The polymerase chain reaction was used to show that the chromosome of R. sphaeroides contains at least one other gene that is a homolog of ctaD, the gene encoding subunit I of the aa3-type cytochrome c oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effect of Zn2+ on the rates of electron transfer and of voltage generation in the cytochrome bc1 complex (bc1) was investigated under excitation of Rhodobacter capsulatus chromatophores with flashing light. When added, Zn2+ retarded the oxidation of cytochrome b and allowed to monitor (at 561-570 nm) the reduction of its high potential heme b(h) (in the absence of Zn2+ this reaction was masked by the fast re-oxidation of the heme). The effect was accompanied by the deceleration of both the cytochrome c(1) reduction (as monitored at 552-570 nm) and the generation of transmembrane voltage (monitored by electrochromism at 522 nm). At Zn2+ <100 microM the reduction of heme b(h) remained 10 times faster than other reactions. The kinetic discrepancy was observed even after an attenuated flash, when bc1 turned over only once. These observations (1) raise doubt on the notion that the transmembrane electron transfer towards heme b(h) is the main electrogenic reaction in the cytochrome bc1 complex, (2) imply an allosteric link between the site of heme b(h) oxidation and the site of cytochrome c1 reduction at the opposite side of the membrane, and (3) indicate that the internal redistribution of protons might account for the voltage generation by the cytochrome bc1 complex.  相似文献   

20.
W Dowhan  C R Bibus    G Schatz 《The EMBO journal》1985,4(1):179-184
Yeast cytochrome c oxidase contains three large subunits made in mitochondria and at least six smaller subunits made in the cytoplasm. There is evidence that the catalytic centers (heme a and copper) are associated with the mitochondrially-made subunits, but the role of the cytoplasmically-made subunits has remained open. Using a gene interruption technique, we have now constructed a Saccharomyces cerevisiae mutant which lacks the largest of the cytoplasmically-made subunits (subunit IV). This mutant is devoid of cyanide-sensitive respiration, the absorption spectrum of cytochrome aa3 and cytochrome c oxidase activity. It still contains the other cytochrome c oxidase subunits but these are not assembled into a stable complex. Active cytochrome c oxidase was restored to the mutant by introducing a plasmid-borne wild-type subunit IV gene; no restoration was seen with a gene carrying an internal deletion corresponding to amino acid residues 28-66 of the mature subunit. Subunit IV is thus necessary for proper assembly of cytochrome c oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号