首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new version of the ESR spin probe partitioning method is developed and applied to the study of hydration properties of dimyristoyl-phosphatidylglycerol (DMPG) and dimyristoyl-phosphatidylcholine (DMPC) vesicles as functions of salt concentration and temperature above the lipid phase transition. The small spin probe di-tert-butyl nitroxide (DTBN) is used in order to achieve motionally narrowed Electron Spin Resonance (ESR) spectra which may be analyzed with high precision. The new method relies on the use of the second harmonic display of the ESR spectrum followed by spectral line fitting. Spectral fitting yields precise ESR parameters giving detailed information on the surroundings of the spin probe in both phospholipid and aqueous phases. The nitrogen hyperfine coupling constant of DTBN arising from those probes occupying the vesicles is used to study the hydration of the vesicle surface. The hydration properties of the negatively charged vesicle surface of DMPG vesicles are affected by the addition of salt at all temperatures. In contrast, the hydration of DMPC vesicles does not change with salt concentration at the low temperatures. However, at higher temperatures the hydration properties of DMPC vesicle are affected by salt which is interpreted to be due to the faster motion of the phospholipid molecules. The partitioning of the spin probe increases with salt concentration for both DMPG and DMPC vesicles, while water penetration decreases simultaneously. The spin probe in the phospholipid bilayer exhibits anisotropic motion and the extent of the anisotropy is increased at the higher salt concentrations.  相似文献   

2.
S T Swanson  D Roise 《Biochemistry》1992,31(25):5746-5751
The binding of a synthetic mitochondrial presequence to large, negatively charged, unilamellar vesicles and to unenergized yeast mitochondria has been measured. The presequence, which corresponds to the amino-terminal 25 residues of the yeast cytochrome oxidase subunit IV precursor, was labeled with a fluorescent probe and used to examine the importance of the surface potentials of membranes on the interactions with the presequence. Binding of the fluorescent presequence to the membranes was determined by measuring a decrease in the fluorescence emission of the bound presequence. Binding both to the vesicles and to the mitochondria could be described as a simple partitioning of the presequence between the aqueous and lipid phases. The partitioning was found to depend on the ionic strength of the medium, and the Gouy-Chapman theory could be used to describe the partitioning at various ionic strengths. Application of the theory allowed the determination of an apparent charge on the presequence (+2.31 +/- 0.25), salt-independent apparent partition coefficients for vesicles (99 +/- 84 M-1) and for unenergized mitochondria (14.5 +/- 3.6 L g-1), and an estimated charge density for the mitochondrial outer membrane (-0.0124 +/- 0.0016 C m-2). This study shows that electrostatic effects are significant for the binding of a mitochondrial presequence both to lipid vesicles and to mitochondria, the natural target membrane of the presequence. The accumulation of positively charged presequences at the negative mitochondrial surface and the subsequent partitioning of the presequences directly into the mitochondrial outer membrane probably represent early steps in the translocation of precursor proteins into mitochondria.  相似文献   

3.
Transmembrane electrical currents of spin-labeled hydrophobic ions.   总被引:4,自引:3,他引:1       下载免费PDF全文
When spin-labeled phosphonium ions are rapidly mixed with phospholipid vesicles, time-dependent changes in the electron paramagnetic resonance spectrum of the spin label are observed. These changes are interpreted in terms of transmembrane transport of the hydrophobic ion, and simple analysis of the data at different membrane potentials is shown to give the binding constant of the ion to both membrane surfaces, the permeability, and current-voltage relationship for the vesicle membrane in the presence of the hydrophobic ion. These results establish the time resolution for methods using the phosphonium ion as a probe of time-dependent potentials across vesicle membranes, as well as provide fundamental information regarding the binding and transport of hydrophobic cations across bilayers. This latter point is significant in view of the fact that hydrophobic cations have not been well characterized in planar bilayers due to their weak binding and low conductance.  相似文献   

4.
Lipid organization and lipid transport processes occurring at the air-water interface of a liposome (lipid vesicle) solution are studied by conventional surface pressure-area measurements and interpreted by an adequate theory. At the interface of a dioleoyl phosphatidylcholine vesicle solution, used for demonstration, a well defined two layer structure selfassembles: vesicles disintegrate at the interface forming a surface-adsorbed lipid monolayer, which prevents further disintegration beyond about 1 dyne/cm surface pressure. A layer of vesicles now assembles in close association with the monolayer. This layer is in vesicle diffusion exchange with the solution and in lipid exchange with the monolayer. The lipid exchange occurs exclusively between the monolayer and the outer lipid layer of the vesicles; it is absent between outer and inner vesicle layers. Equilibration of the lipid density in the monolayer with that in the vesicle outer layer provides a coherent and quantitative explanation of the observed hysteresis effects and equilibrium states. The correspondence between monolayer and vesicle outer layer is traced down to equilibrium constants and rate constants and their dependences on surface pressure, vesicle size and concentration. p] Other alternate realizations of surface structure and exchange, including induced lipid flip-flop within vesicles or vesicle monolayer adhesion or fusion are potential applications of the proposed analysis.  相似文献   

5.
The study of vesicles in suspension is important to understand the complicated dynamics exhibited by cells in in vivo and in vitro. We developed a computer simulation based on the boundary-integral method to model the three dimensional gravity-driven sedimentation of charged vesicles towards a flat surface. The membrane mechanical behavior was modeled using the Helfrich Hamiltonian and near incompressibility of the membrane was enforced via a model which accounts for the thermal fluctuations of the membrane. The simulations were verified and compared to experimental data obtained using suspended vesicles labelled with a fluorescent probe, which allows visualization using fluorescence microscopy and confers the membrane with a negative surface charge. The electrostatic interaction between the vesicle and the surface was modeled using the linear Derjaguin approximation for a low ionic concentration solution. The sedimentation rate as a function of the distance of the vesicle to the surface was determined both experimentally and from the computer simulations. The gap between the vesicle and the surface, as well as the shape of the vesicle at equilibrium were also studied. It was determined that inclusion of the electrostatic interaction is fundamental to accurately predict the sedimentation rate as the vesicle approaches the surface and the size of the gap at equilibrium, we also observed that the presence of charge in the membrane increases its rigidity.  相似文献   

6.
Lipid organization and lipid transport processes occurring at the air-water interface of a liposome (lipid vesicle) solution are studied by conventional surface pressure-area measurements and interpreted by an adequate theory. At the interface of a dioleoyl phosphatidylcholine vesicle solution, used for demonstration, a well defined two layer structure selfassembles: vesicles disintegrate at the interface forming a surface-adsorbed lipid monolayer, which prevents further disintegration beyond about 1 dyne/cm surface pressure. A layer of vesicles now assembles in close association with the monolayer. This layer is in vesicle diffusion exchange with the solution and in lipid exchange with the monolayer. The lipid exchange occurs exclusively between the monolayer and the outer lipid layer of the vesicles; it is absent between outer and inner vesicle layers. Equilibration of the lipid density in the monolayer with that in the vesicle outer layer provides a coherent and quantitative explanation of the observed hysteresis effects and equilibrium states. The correspondence between monolayer and vesicle outer layer is traced down to equilibrium constants and rate constants and their dependences on surface pressure, vesicle size and concentration. Other alternate realizations of surface structure and exchange, including induced lipid flip-flop within vesicles or vesicle monolayer adhesion or fusion are potential applications of the proposed analysis.  相似文献   

7.
Purified phosphatidylcholine exchange protein was used to exchange phosphatidylcholine between homogeneous single-walled phosphatidylcholine vesicles and human erythrocyte ghosts. When excess ghosts were present, it was found that only 70% of the vesicle phosphatidylcholine was available for exchange. This fraction corresponds closely to the amount of phosphatidycholine in the outer monolayer of these vesicles, indicating that only the outer surface of the vesicle is accessible to the exchange protein. Also, it was found that all phosphatidylcholine introduced into vesicles by the exchange protein was available for subsequent exchange. Using the exchange protein, asymmetrical vesicles were prepared in which the outer monolayer was either enriched or depleted in radioactive phosphatidylcholine as compared to the inner monolayer. Re-equilibration of the radioactivity between the two surfaces of the vesicle (flip-flop) could not be detected, even after 5 days at 37degrees. It is estimated that the half-time for flip-flop is in excess of 11 days at 37degrees. These results indicate that the properties of the exchange protein can be expolited to measure phosphatidylcholine flip-flop rates and possible phosphatidylcholine asymmetry in biological and model membranes, without altering the structure of the membrane.  相似文献   

8.
The temperature-induced budding of POPC-cardiolipin-cholesterol, POPC-POPS-cholesterol and POPC-POPG-cholesterol giant lipid vesicles in the presence of beta(2)-glycoprotein I (beta(2)-GPI) in the outer solution was studied experimentally and theoretically. The observed budding transition of vesicles was continuous which can be explained by taking into account the orientational ordering and direct interactions between oriented lipids. The attachment of positively charged beta(2)-GPI to the negatively charged outer surface of POPC-cardiolipin-cholesterol, POPC-POPS-cholesterol and POPC-POPG-cholesterol giant vesicles caused coalescence of the spheroidal membrane bud with the parent vesicle before the bud could detach from the parent vesicle, i.e. vesiculate. Theoretically, the protein-mediated attraction between the membrane of a bud and the parent membrane was described as an interaction between two electric double layers. It was shown that the specific spatial distribution of charge within beta(2)-GPI molecules attached to the negatively charged membrane surface may explain the observed attraction between like-charged membrane surfaces.  相似文献   

9.
Q Yang  Y Guo  L Li    S W Hui 《Biophysical journal》1997,73(1):277-282
The effect of lipid headgroup and curvature-related acyl packing stress on PEG-induced phospholipid vesicle aggregation and fusion were studied by measuring vesicle and aggregate sizes using the quasi-elastic light scattering and fluorescence energy transfer techniques. The effect of the lipid headgroup was monitored by varying the relative phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contents in the vesicles, and the influence of hydrocarbon chain packing stress was controlled either by the relative amount of PE and PC content in the vesicles, or by the degree of unsaturation of the acyl chains of a series of PEs, e.g., dilinoleoylphosphatidylethanolamine (dilin-PE), lysophosphatidylethanolamine (lyso-PE), and transacylated egg phosphatidylethanolamine (TPE). The PEG threshold for aggregation depends only weakly on the headgroup composition of vesicles. However, in addition to the lipid headgroup, the curvature stress of the monolayer that forms the vesicle walls plays a very important role in fusion. Highly stressed vesicles, i.e., vesicles containing PE with highly unsaturated chains, need less PEG to induce fusion. This finding applies to the fusion of both small unilamellar vesicles and large unilamellar vesicles. The effect of electrostatic charge on vesicle aggregation and fusion were studied by changing the pH of the vesicle suspension media. At pH 9, when PE headgroups are weakly charged, increasing electrostatic repulsion between headgroups on the same bilayer surface reduces curvature stress, whereas increasing electrostatic repulsion between apposing bilayer headgroups hinders intervesicle approach, both of which inhibit aggregation and fusion, as expected.  相似文献   

10.
The energetic determinants of the distribution of anionic phospholipids across a phosphatidylcholine (PtdCho) bilayer with different packing constraints in the two leaflets were studied, using (13)CH2-ethyl-labeled phosphatidylethanol (PtdEth) as a (13)C NMR membrane probe. PtdEth is unique in exhibiting a split (13)CH2-ethyl resonance in sonicated vesicles, the two components originating from the inner and outer leaflets, thus permitting the determination of the PtdEth concentration in each leaflet. Small and large unilamellar PtdEth-PtdCho vesicles were prepared in solutions of different ionic strengths. A quantitative expression for the transbilayer distribution of PtdEth, based on the balance between steric and electrostatic factors, was derived. The transbilayer difference in packing constraints was obtained from the magnitude of the PtdEth signal splitting. The electrostatic contribution could be satisfactorily described by the transmembrane difference in Gouy-Chapman surface potentials. At low (0.1-0.25%) PtdEth levels and high (up to 500 mM) salt concentrations, PtdEth had a marked fivefold preference for the inner leaflet, presumably because of its small headgroup, which favors tighter packing. At higher PtdEth content (4.8-9.1%) and low salt concentrations, where electrostatic repulsion becomes a dominant factor, the asymmetry was markedly reduced and an almost even distribution across the bilayer was obtained. In less curved, large vesicles, where packing constraints in the two leaflets are approximately the same, the PtdEth distribution was almost symmetrical. This study is the first quantitative analysis of the balance between steric and electrostatic factors that determines the equilibrium transbilayer distribution of charged membrane constituents.  相似文献   

11.
A method has been developed for the selective determination of the fatty acid side chain distribution associated with the amino containing phospholipids located in the inner and outer surfaces of membranes. Using sonicated phosphatidylethanolamine/phosphatidylcholine vesicles as a model, the analysis consists of selective labeling of the outer surface amino groups with the membrane impermeable reagent 2,4,6-trinitrobenzenesulfonic acid. Outer and inner surface phosphatidylethanolamine fractions are separated by thin-layer chromatography. Analysis of methyl esters derived from these two fractions, by gas-liquid chromatography, yields the fatty acid side chain distribution. Our results show that there is no mol fraction dependence of the incorporation of any specific fatty acid side chains of egg yolk phosphatidylethanolamine into the vesicle or any preferential distribution of these side chains in the inner or outer vesicle surface. The surface distribution of the egg yolk phosphatidylethanolamine molecules in these vesicles appears to be determined by the head group packing requirements and not the fatty acid side chain composition.  相似文献   

12.
A method has been developed for the selective determination of the fatty acid side chain distribution associated with the amino containing phospholipids located in the inner and outer surfaces of membranes. Using sonicated phosphatidylethanolamine/phosphatidylcholine vesicles as a model, the analysis consists of selective labeling of the outer surface amino groups with the membrane impermeable reagent 2,4,6-trinitrobenzenesulfonic acid. Outer and inner surface phosphatidylethanolamine fractions are separated by thin-layer chromatography. Analysis of methyl esters derived from these two fractions, by gas-liquid chromatography, yields the fatty acid side chain distribution. Our results show that there is no mol fraction dependence of the incorporation of any specific fatty acid side chains of egg yolk phosphatidylethanolamine into the vesicle or any preferential distribution of these side chains in the inner or outer vesicle surface. The surface distribution of the egg yolk phosphatidylethanolamine molecules in these vesicles appears to be determined by the head group packing requirements and not the fatty acid side chain composition.  相似文献   

13.
Salinity-induced alterations in tomato (Lypersicon esculentum Mill. cv Heinz 1350) root plasma membrane properties were studied and characterized using a membrane vesicle system. Equivalent rates of MgATP-dependent H+-transport activity were measured by quinacrine fluorescence (ΔpH) in plasma membrane vesicles isolated from control or salt-stressed (75 millimolar salt) tomato roots. However, when bis-[3-phenyl-5-oxoisoxazol-4-yl] pentamethine was used to measure MgATP-dependent membrane potential (ΔΨ) formation, salt-stressed vesicles displayed a 50% greater initial quench rate and a 30% greater steady state quench than control vesicles. This differential probe response suggested a difference in surface properties between control and salt-stressed membranes. Fluorescence titration of vesicles with the surface potential probe, 8-anilino-1-napthalenesulphonic acid (ANS) provided dissociation constants (Kd) of 120 and 76 micromolar for dye binding to control and salt-stressed vesicles, respectively. Membrane surface potentials (Ψo) of−26.0 and −13.7 millivolts were calculated for control and salt-stressed membrane vesicles from the measured Kd values and the calculated intrinsic affinity constant, Ki. The concentration of cations and anions at the surface of control and salt-stressed membranes was estimated using Ψo values and the Boltzmann equation. The observed difference in membrane surface electrostatic properties was consistent with the measured differences in K+-stimulated kinetics of ATPase activity between control and salt-stressed vesicles and by the differential ability of Cl ions to stimulate H+-transport activity. Salinity-induced changes in plasma membrane electrostatic properties may influence ion transport across the plasma membrane.  相似文献   

14.
The energetics of lipid vesicle-vesicle aggregation in dextran (36,000 mol wt) solutions have been studied with the use of micromechanical experiments. The affinities (free energy reduction per unit area of contact) for vesicle-vesicle aggregation were determined from measurements of the tension induced in an initially flaccid vesicle membrane as it adhered to another vesicle. The experiments involved controlled aggregation of single vesicles by the following procedure: two giant (approximately 20 micron diam) vesicles were selected from a chamber on the microscope stage that contained the vesicle suspension and transferred to a second chamber that contained a dextran (36,000 mol wt) salt solution (120 mM); the vesicles were then maneuvered into position for contact. One vesicle was aspirated with sufficient suction pressure to create a rigid sphere outside the pipette; the other vesicle was allowed to spread over the rigid vesicle surface. The aggregation potential (affinity) was derived from the membrane tension vs. contact area. Vesicles were formed from mixture of egg lecithin (PC) and phosphatidylserine (PS). For vesicles with a PC/PS ratio of 10:1, the affinity showed a linear increase with concentration of dextran; the values were on the order of 10(-1) ergs/cm2 at 10% by weight in grams. Similarly, pure PC vesicle aggregation was characterized by an affinity value of 1.5 X 10(-1) ergs/cm2 in 10% dextran by weight in grams. In 10% by weight in grams solutions of dextran, the free energy potential for vesicle aggregation decreased as the surface charge (PS) was increased; the affinity extrapolated to zero at a PC/PS ratio of 2:1. When adherent vesicle pairs were transferred into a dextran-free buffer, the vesicles did not spontaneously separate. They maintained adhesive contact until forceably separated, after which they would not read here. Thus, it appears that dextran forms a "cross-bridge" between the vesicle surfaces.  相似文献   

15.
The electrophoretic mobilities of multilamellar phosphatidylserine vesicles were measured in solutions containing monovalent cations, and the xi potentials, the electrostatic potentials at the hydrodynamic plane of shear, were calculated from the Helmholtz--Smoluchowski equation. In the presence of 0.1 M lithium, sodium, ammonium, potassium, rubidium, cesium, tetraethylammonium, and tetramethylammonium chloride, the xi potentials were -60, -62, -72, -73, -77, -80, -82, and -91 mV, respectively. Similar results were obtained with phosphatidylglycerol vesicles; different results were obtained with cardiolipin, phosphatidylinositol, and phosphatidic acid vesicles. The phosphatidylserine results are interpreted in terms of the Stern equation, a combination of the Gouy equation from the theory of the diffuse double layer, the Boltzmann relation, and the Langmuir adsorption isotherm. Evidence is presented that suggests the hydrodynamic plane of shear is 2 A from the surface of the membrane in solutions containing the alkali metal cations. With this assumption, the intrinsic association constants of the above monovalent cations with phosphatidylserine are 0.8, 0.6, 0.17, 0.15, 0.08, 0.05, 0.03, and 0 M-1, respectively. The validity of this approach was tested in two ways. First, the xi potentials of vesicles formed from mixtures of phosphatidylserine and a zwitterionic lipid, phosphatidylcholine, were measured in solutions containing different concentrations of sodium. All the data could be described by the Stern equation if the "relaxation" of the ionic atmosphere, which is predicted by classic electrostatic and hydrodynamic theory to occur at low salt concentrations and high potentials, was circumvented by using only large (diameter greater than 13 micrometers) vesicles for these measurements. Second, the fluorescent probe 2-(p-toluidinyl)naphthalene-6-sulfonate was used to estimate the potential at the surface of phosphatidylserine and phosphatidylglycerol vesicles sonicated in 0.1 M NaCl. Reasonable agreement with the predicted values of the surface potential was obtained.  相似文献   

16.
M Yamazaki  T Ito 《Biochemistry》1990,29(5):1309-1314
The mechanism of poly(ethylene glycol)-induced fusion of phospholipid vesicles was studied based on the "osmophobic association" theory which was recently proposed both theoretically [Ito, T., Yamazaki, M., & Ohnishi, S. (1989) Biochemistry 28, 5626-5630] and also experimentally [Yamazaki, M., Ohnishi, S., & Ito, T. (1989) Biochemistry 28, 3710-3715]. Osmophobic association and fusion were detected by measuring the light scattering of the vesicle suspension; the former was detected from the increase in light scattering induced by the addition of PEG, and the latter was from the irreversibility of the increase in light scattering. Threshold concentrations of PEG were required not only for osmophobic association but also for fusion. The threshold concentration for fusion depended on the molecular weight of PEG and also on the electrostatic repulsive interaction between phospholipid vesicles, which was manipulated by the use of vesicles with negative surface charge; increasing the molecular weight of PEG lowered the threshold concentration, and increasing the electrostatic repulsive interaction raised it. In addition, a transient leakage of internal contents from the vesicles was observed at the concentration that caused fusion. When the surface charge of the vesicle was varied, the threshold for fusion coincided with that for osmophobic association, provided that the latter exceeded 22 wt % of PEG 6000. However, when the threshold for osmophobic association was less than 22 wt %, the threshold for fusion remained approximately 22 wt %, irrespective of the difference in the threshold for osmophobic association.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Effects of paramagnetic shift reagents on the 13C NMR spectra obtained from single-walled vesicle dispersions of egg phosphatidylcholine enriched with 13C in the N-methyl carbons are investigated. Spectra obtained at 25.1 MHz show that, at Yb3+ to phospholipid molar ratios as low as 0.06, complete resolution of the N-methyl carbon resonances is obtained from molecules on the inner and outer faces of the vesicle bilayer. No precipitation of the vesicles is caused by Yb3+ at these concentrations nor is appreciable line broadening observed. Other paramagnetic shift reagents frequently used in proton NMR investigations of phosphatidylcholine vesicles do not give complete separation of the N-methyl 13C signals from the two bilayer surfaces. K3Fe(CN)b,Eu3+, and Pr3+ cause precipitation of the phosphatidylcholine vesicles at concentrations, which give only incomplete resolution of these signals. T1 measurements of the resonances separated by Yb3+ indicate that the choline groups on the inner bilayer surface are less mobile than are the same groups in the outer surface. Gated proton decoupling measurements, which show that the nuclear Overhauser effect is 2.8 +/- 0.1, indicate that the dominant mode of relaxation is dipolar interaction.  相似文献   

18.
Synaptic vesicles contain a variety of proteins and lipids that mediate fusion with the pre-synaptic membrane. Although the structures of many synaptic vesicle proteins are known, an overall picture of how they are organized at the vesicle surface is lacking. In this paper, we describe a better method for the isolation of squid synaptic vesicles and characterize the results. For highly pure and intact synaptic vesicles from squid optic lobe, glycerol density gradient centrifugation was the key step. Different electron microscopic methods show that vesicle membrane surfaces are largely covered with structures corresponding to surface proteins. Each vesicle contains several stalked globular structures that extend from the vesicle surface and are consistent with the V-ATPase. BLAST search of a library of squid expressed sequence tags identifies 10 V-ATPase subunits, which are expressed in the squid stellate ganglia. Negative-stain tomography demonstrates directly that vesicles flatten during the drying step of negative staining, and furthermore shows details of individual vesicles and other proteins at the vesicle surface.  相似文献   

19.
The ability to specifically monitor the behavior of the inner monolayer lipids of membranous vesicles during the membrane fusion process is useful technically and experimentally. In this study, we have identified N-NBD-phosphatidylserine as a reducible probe particularly suitable for inner monolayer fusion assays because of its low rate of membrane translocation after reduction of the outer monolayer probes by dithionite. Data are presented on translocation as a function of temperature, vesicle size, membrane composition, and serum protein concentration. Translocation as a result of the fusion event itself was also characterized. We further show here that a second membrane-localized probe, a long wavelength carbocyanine dye referred to a diI(5)C18ds, appears to form a membrane-bound resonance energy transfer pair with N-NBD-PS, and its outer monolayer fluorescence can also be eliminated by dithionite treatment. Lipid dilution of these probes upon fusion with unlabeled membranes leads to an increase in NBD donor fluorescence, and hence is a new type of inner monolayer fusion assay. These inner monolayer probe mixing assays were compared to random lipid labeling and aqueous contents mixing assays for cation-dependent fusion of liposomes composed of phosphatidylserine and phosphatidylethanolamine. The results showed that the inner monolayer fusion assay eliminates certain artifacts and reflects fairly closely the rate of non-leaky mixing of aqueous contents due to fusion, while outer monolayer mixing always precedes mixing of aqueous contents. In fact, vesicle aggregation and outer monolayer lipid mixing were found to occur over very long periods of time without inner monolayer mixing at low cation concentrations. Externally added lysophosphatidylcholine inhibited vesicle aggregation, outer monolayer mixing and any subsequent fusion. The state of vesicle aggregation and outer monolayer exchange that occurs below the fusion threshold may represent a metastable intermediate state that may be useful for further studies of the mechanism of membrane fusion.  相似文献   

20.
The curvature, cholesterol content,and transbilayer distribution of phospholipids significantly influence the functional properties of cellular membranes, yet little is known of how these parameters interact. In this study, the transbilayer distribution of phosphatidylethanolamine (PE) is determined in vesicles with large (98 nm) and small (19 nm)radii of curvature and with different proportions of PE, phosphatidylcholine, and cholesterol. It was found that the mean diameters of both types of vesicles were not influenced by their lipid composition, and that the amino-reactive compound 2,4,6-trinitrobenzenesulphonic acid (TNBS) was unable to cross the bilayer of either type of vesicle. When large vesicles were treated with TNBS, ~40% of the total membrane PE was derivatized; in the small vesicles 55% reacted. These values are interpreted as representing the percentage of total membrane PE residing in the outer leaflet of the vesicle bilayer. The large vesicles likely contained ~20% of the total membrane lipid as internal membranes. Therefore, in both types of vesicles, PE as a phospholipid class was randomly distributed between the inner and outer leaflets ofthe bilayer. The proportion oftotal PE residing in the outer leaflet was unaffected by changes in either the cholesterol orPE content of the vesicles. However, the transbilayer distributions of individual molecular species of PE were not random, and were significantly influenced by radius of curvature, membrane cholesterol content, or both. For example, palmitate and docosahexaenoate-containing species of PE were preferentially located in the outer leaflet of the bilayer. Membrane cholesterol content affected the transbilayer distributions of stearate-, oleate-, and linoleate-containing species. The transbilayer distributions ofpalmitate-, docosahexaenoate-, and stearate-containing species were significantly influenced by membrane curvature, but only in the presence of high levels of cholesterol. Thus, differences in membrane curvature and cholesterol content alter the array of PE molecules present on the surfaces of phospholipid bilayers. In cells and organelles, these differences could have profound effects on a number of critical membrane functions and processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号