首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are reports on some patients with clearly manifested specific features of genotype and phenotype similar to those of ob/ob and db/db mice. Three patients from Turkey were described who had a homozygous mutation in the gene of leptin identical to the mutation in C57BL6J ob/ob mice. This mutation is a C --> T substitution in codon 105 of the amino acid sequence of leptin. In mice this mutation generates a stop-codon; in humans it substitutes Arg-105 with Trp. The mutant human leptin cannot be secreted by the cells and thus has no effect on the hypothalamus. Patients with a homozygous mutation of the leptin receptor resulting in the G --> T substitution in the splice donor site of exon 16 were studied in a family of Kabilian origin. Exon 16 was not included in the mature mRNA molecule, and a truncated leptin receptor was synthesized which lacked the transmembrane and intracellular domains; this receptor was unable to transduce the hormonal signal. Both groups of patients suffered from obesity, delayed linear growth, infertility, increased blood insulin level, and other disorders. Leptin influences lipid metabolism by stimulating the expression of the proopiomelanocortin (POMC) gene in melanocortinergic neurons of the hypothalamus. POMC is the precursor of alpha-melanocyte-stimulating hormone (alpha-MSH), which binds to the melanocortin receptor MC4-R in the brain, decreases appetite, and activates lipid metabolism. Patients with mutations in MC4-R suffered only from obesity, but their growth and puberty were not affected. Thus, leptin apparently stimulates growth and puberty not through its binding to the receptors on melanocortinergic neurons, but through its binding to receptors on other hypothalamic neurons; this effect of leptin is not affected by mutations in the MC4-R gene.  相似文献   

2.
3.
Single nucleotide polymorphism (SNP) near certain genes revealed association of FAT (fat mass and obesity-associated gene), MC4R (melanocortin 4 receptor gene), and other genes with obesity. However, involvement of the FAT expression products in the regulation of energy balance remains to be clarified. The function of MC4R encoding melanocortin 4 receptor (MC4R) is somewhat better understood. α-, β-, and γ- MSH encoded by the POMC gene bind to MC4R, reduce food intake, and slow down fat accumulation. Expression of POMC encoding MSH is enhanced by leptin binding to its receptor (LepRb) in hypothalamic neurons. Mutations in human and animal MC4R, POMC, and LEP genes are associated with obesity. More than 60 mutations in MC4R, more than 20 mutations in POMC and fewer LEP mutations have been reported. Nonsense mutations and reading frame shifts block gene expression and thereby disrupt protein synthesis. Missense mutations frequently affect protein folding in endoplasmic reticulum; unfolded or misfolded proteins remain in the cytoplasm and undergo degradation. Certain missence mutations do not interfere with gene expression and folding of proteins but impair their functioning at the periphery. p.S127L mutation in MC4R, p.E206X and p.F144L mutations in POMC as well as other mutations in homozygous and heterozygous forms account for impaired energy balance in humans. The following mutations have been identified in the LEP gene: G133fsX15, p.R105X, p.R105W, and p.S141C mutations. In homozygous form they are associated with obesity and other pathological conditions.  相似文献   

4.
Recently, haploinsufficiency mutations in the melanocortin-4 receptor gene (MC4-R) were detected which were assumed to lead to the phenotype of extreme obesity. Previously, we detected three obese carriers among 306 index patients. Here we describe the detection of one haploinsufficiency carrier in an additional study group of 186 obese individuals. We subsequently genotyped and phenotyped 43 family members of these four index patients, two of whom were second-degree cousins. A total of 19 carriers were identified. Extreme obesity was the predominating phenotype. However, moderate obesity occurred in three of the carriers. No other specific phenotypic abnormalities were detected. Female haploinsufficiency carriers were heavier than male carriers in the respective families, a finding similar to findings in MC4-R-knockout mice. In conclusion, our data fully support the etiologic role of MC4-R haploinsufficiency mutations in obesity.  相似文献   

5.
The melanocortin-4 receptor (MC4R) is a seven, transmembrane G-protein-coupled receptor whose ligand, alpha-melanocyte-stimulating hormone (alpha-MSH), is a post-translational derivative of pro-opiomelanocortin (POMC). The regulatory pathway, of which MC4R is a part, has become an area of intense interest because of its potential role in obesity. Three studies have identified individuals with dominantly inherited obesity segregating with mutations in the MC4R gene. It has been hypothesized that the mutation found in these subjects resulted in a loss of gene function resulting in obesity due to haploinsufficiency of the MC4R gene. We have been studying the molecular basis of the phenotype of individuals with large deletions of chromosome 18q. Due to its location at 18q21.3, the MC4R gene is hemizygous in approximately one-third of the individuals in our study. If hemizygosity of the MC4R gene results in haploinsufficiency-induced obesity, then individuals with deletions of 18q whose deletions include the MC4R gene should be obese in comparison with those individuals whose deletion does not include the gene. Our data indicate no difference in obesity among those deleted and not deleted for the gene. This supports the hypothesis that the MC4R gene product is haplosufficient and the involvement of MC4R in obesity may reflect a dominant negative effect.  相似文献   

6.
The yellow mouse obesity syndrome is due to dominant mutations at the Agouti locus, which is characterized by obesity, hyperinsulinemia, insulin resistance, hyperglycemia, hyperleptinemia, increased linear growth, and yellow coat color. This syndrome is caused by ectopic expression of Agouti in multiple tissues. Mechanisms of Agouti action in obesity seem to involve, at least in part, competitive melanocortin antagonism. Both central and peripheral effects have been implicated in Agouti-induced obesity. An Agouti-Related Protein (AGRP) has been described recently. It has been shown to be expressed in mice hypothalamus and to act similarly to agouti as a potent antagonist to central melanocortin receptor MC4-R, suggesting that AGRP is an endogenous MC4-R ligand. Mice lacking MC4-R become hyperphagic and develop obesity, implying that agouti may lead to obesity by interfering with MC4-R signaling in the brain and consequently regulating food intake. Furthermore, food intake is inhibited by intracerebro-ventricular injection of a potent melanocortin agonist and was reversed by administration of an MC4-R antagonist. The direct cellular actions of Agouti include stimulation of fatty acid and triglyceride synthesis via a Ca2+-dependent mechanism. Agouti and insulin act in an additive manner to increase lipogenesis. This additive effect of agouti and insulin is demonstrated by the necessity of insulin in eliciting weight gain in transgenic mice expressing agouti specifically in adipose tissue. This suggests that agouti expression in adipose tissue combined with hyperinsulinemia may lead to increased adiposity. The roles of melanocortin receptors or agouti-specific receptor(s) in agouti regulation of adipocyte metabolism and other peripheral effects remain to be determined. In conclusion, both central and peripheral actions of agouti contribute to the yellow mouse obesity syndrome and this action is mediated at least in part by antagonism with melanocortin receptors and/or regulation of intracellular calcium.  相似文献   

7.
The melanocortin peptides regulate a wide variety of physiological processes, including pigmentation and glucocorticoid production, and also have several activities in the central and peripheral nervous systems. The melanocortin receptor family includes the melanocytestimulating hormone receptor (MSH-R), adrenocorticotropic hormone receptor (ACTH-R), and two neural receptors, MC3-R and MC4-R. In the human these receptors map to 16q24 (MSH-R), 18p11.2 (ACTH-R), 20q13.2 (MC3-R), and 18q22 (MC4-R). The corresponding locations in the mouse are 8, 18, and 2; a variant for mapping MC4-R has not yet been identified. The data reported here also show that the neural MC3 receptor maps close to a disease locus for benign neonatal epilepsy in human and near the El-2 epilepsy susceptibility locus in the mouse.  相似文献   

8.
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.  相似文献   

9.
Loss of function mutations in the receptor tyrosine kinase TrkB pathway resulted in hyperphagia and morbid obesity in human and rodents. Conversely, peripheral or central stimulation of TrkB by its natural ligands BDNF or NT4 reduced body weight and food intake in mice, supporting the idea that TrkB is a key anorexigenic signal downstream of the melanocortin-4 receptor (Mc4r) system. Here we show that in non-human primates TrkB agonists were anorexigenic when applied centrally, but surprisingly orexigenic, leading to gain in appetite, body weight, fat deposits and serum leptin levels, when given peripherally. The orexigenic and pro-obesity effects of peripherally administered TrkB agonists appear to be dose dependent, not associated with fluid retention nor with evidence of receptor down regulation. Our findings revealed that TrkB signaling exerts dual control on energy homeostasis in the primates that could be targeted for the treatment of either wasting disorders or obesity.  相似文献   

10.
Functionally active antibodies (Abs) against central G-protein-coupled receptors have not yet been reported. We selected the hypothalamic melanocortin-4 receptor (MC4-R) as a target because of its crucial role in the regulation of energy homeostasis. A 15 amino acid sequence of the N-terminal (NT) domain was used as an antigen. This peptide showed functional activity in surface plasmon resonance experiments and in studies on HEK-293 cells overexpressing the human MC4-R (hMC4-R). Rats immunized against the NT peptide produced specific antibodies, which were purified and characterized in vitro. In HEK-293 cells, rat anti-NT Abs showed specific immunofluorescence labeling of hMC4-R. They reduced the production of cAMP under basal conditions and after stimulation with a synthetic MC4-R agonist. Rats immunized against the NT peptide developed a phenotype consistent with MC4-R blockade, that is, increased food intake and body weight, increased liver and fat pad weight, and elevated plasma triglycerides. In a separate experiment in rats, an increase in food intake could be produced after injection of purified Abs into the third ventricle. Similar results were obtained in rats injected with anti-NT Abs raised in rabbits. Our data show for the first time that active immunization of rats against the NT sequence of the MC4-R results in specific Abs, which appear to stimulate food intake by acting as inverse agonists in the hypothalamus.  相似文献   

11.
The kinase suppressor of ras 2 (KSR2) gene resides at human chromosome 12q24, a region linked to obesity and type 2 diabetes (T2D). While knocking out and phenotypically screening mouse orthologs of thousands of druggable human genes, we found KSR2 knockout (KSR2(-/-)) mice to be more obese and glucose intolerant than melanocortin 4 receptor(-/-) (MC4R(-/-)) mice. The obesity and T2D of KSR2(-/-) mice resulted from hyperphagia which was unresponsive to leptin and did not originate downstream of MC4R. The kinases AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are each linked to food intake regulation, but only mTOR had increased activity in KSR2(-/-) mouse brain, and the ability of rapamycin to inhibit food intake in KSR2(-/-) mice further implicated mTOR in this process. The metabolic phenotype of KSR2 heterozygous (KSR2(+/minus;)) and KSR2(-/-) mice suggests that human KSR2 variants may contribute to a similar phenotype linked to human chromosome 12q24.  相似文献   

12.
The role of agouti-related protein in regulating body weight.   总被引:7,自引:0,他引:7  
Defects in signaling by leptin, a hormone produced primarily by adipose tissue that informs the brain of the body's energy reserves, result in obesity in mice and humans. However, the majority of obese humans do not have abnormalities in leptin or its receptor but instead exhibit leptin resistance that could result from defects in downstream mediators of leptin action. Recently, two potential downstream mediators, agouti-related protein (Agrp) and its receptor, the melanocortin-4 receptor (Mc4r), have been identified. Agrp and Mc4r are excellent candidates for human disorders of body weight regulation and represent promising targets for pharmacological intervention in the treatment of these disorders.  相似文献   

13.
14.
Numerous mutations of the human melanocortin receptor type 4 (MC4R) gene are responsible for monogenic obesity, and some of them appear to be associated with predisposition or resistance to polygenic obesity. Thus, this gene is considered a functional candidate for fat tissue accumulation and body weight in domestic mammals. The aim of the study was comparative analysis of chromosome localization, nucleotide sequence, and polymorphism of the MC4R gene in two farmed species of the Canidae family, namely the Chinese raccoon dog (Nycterutes procyonoides procyonoides) and the arctic fox (Alopex lagopus). The whole coding sequence, including fragments of 3'UTR and 5'UTR, shows 89% similarity between the arctic fox (1276 bp) and Chinese raccoon dog (1213 bp). Altogether, 30 farmed Chinese raccoon dogs and 30 farmed arctic foxes were searched for polymorphisms. In the Chinese raccoon dog, only one silent substitution in the coding sequence was identified; whereas in the arctic fox, four InDels and two single-nucleotide polymorphisms (SNPs) in the 5'UTR and six silent SNPs in the exon were found. The studied gene was mapped by FISH to the Chinese raccoon dog chromosome 9 (NPP9q1.2) and arctic fox chromosome 24 (ALA24q1.2-1.3). The obtained results are discussed in terms of genome evolution of species belonging to the family Canidae and their potential use in animal breeding.  相似文献   

15.
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

16.
Leptin   总被引:39,自引:0,他引:39  
Leptin is an adipocyte hormone that signals nutritional status to the central nervous system (CNS) and peripheral organs. Leptin is also synthetized in the placenta and in gastrointestinal tract, although its role in these tissues is not yet clear. Circulating concentrations of leptin exhibit pulsatility and circadian rhythmicity. The levels of plasma leptin vary directly with body mass index and percentage body fat, and leptin contributes to the regulation of body weight. Leptin plasma concentrations are also influenced by metabolic hormones, sex, and body energy requirements. Defects in the leptin signaling pathway result in obesity in animal models. Only a few obese humans have been identified with mutations in the leptin gene or in the leptin receptor; however, most cases of obesity in humans are associated with high leptin levels. Thus, in humans obesity may represent a state of leptin resistance. Minute-to-minute fluctuations in peripheral leptin concentrations influence the activity of the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axes, indicating that leptin may be a modulator of reproduction, stress-related endocrine function, and behavior. This suggests potential roles for leptin or its antagonists in the diagnosis, pathophysiology and treatment of several human diseases.  相似文献   

17.
Fat is delivered to tissues by apoB-containing lipoproteins synthesized in the liver and intestine with the help of an intracellular chaperone, microsomal triglyceride transfer protein (MTP). Leptin, a hormone secreted by adipose tissue, acts in the brain and on peripheral tissues to regulate fat storage and metabolism. Our aim was to identify the role of leptin signaling in MTP regulation and lipid absorption using several mouse models deficient in leptin receptor (LEPR) signaling and downstream effectors. Mice with spontaneous LEPR B mutations or targeted ablation of LEPR B in proopiomelanocortin (POMC) or agouti gene related peptide (AGRP) expressing cells had increased triglyceride in plasma, liver, and intestine. Furthermore, melanocortin 4 receptor (MC4R) knockout mice expressed a similar triglyceride phenotype, suggesting that leptin might regulate intestinal MTP expression through the melanocortin pathway. Mechanistic studies revealed that the accumulation of triglyceride in the intestine might be secondary to decreased expression of MTP and lipid absorption in these mice. Surgical and chemical blockade of vagal efferent outflow to the intestine in wild-type mice failed to alter the triglyceride phenotype, demonstrating that central neural control mechanisms were likely not involved in the observed regulation of intestinal MTP. Instead, we found that enterocytes express LEPR, POMC, AGRP, and MC4R. We propose that a peripheral, local gut signaling mechanism involving LEPR B and MC4R regulates intestinal MTP and controls intestinal lipid absorption.  相似文献   

18.
MacKenzie RG 《Peptides》2006,27(2):395-403
Mutations in the human melanocortin-4 receptor (MC4R) gene have been associated with severe obesity. Many of the mutations result in partial or complete loss-of-function based on the nature of the mutation or the function of mutated receptors when tested in heterologous expression systems. This review discusses the role of MC4R in the central regulation of body weight, the pathogenic mechanisms of the mutations, and the validity of MC4R as an anti-obesity drug target.  相似文献   

19.
The melanocortin system and energy balance   总被引:7,自引:0,他引:7  
Butler AA 《Peptides》2006,27(2):281-290
The melanocortins, a family of peptides produced from the post-translational processing of pro-opiomelanocortin (POMC), regulate ingestive behavior and energy expenditure. Loss of function mutations of genes encoding POMC, or of either of two melanocortin receptors expressed in the central nervous system (MC3R, MC4R), are associated with obesity. The analyses of MC4R knockout mice indicate that activation of this receptor is involved in the regulation of appetite, the adaptive metabolic response to excess caloric consumption, and negative energy balance associated with cachexia induced by cytokines. In contrast, MC3R knockout mice exhibit a normal, or even exaggerated, response to signals that induce a state of negative energy balance. However, loss of the MC3R also results in an increase in adiposity. This article discusses the regulation of energy balance by the melanocortins. Published and newly presented data from studies analyzing of energy balance of MC3R and MC4R knockout mice indicate that increased adiposity observed in both models involves an imbalance in fat intake and oxidation.  相似文献   

20.
Yoshimatsu H 《Peptides》2006,27(2):326-332
Hypothalamic neuronal histamine and its H(1) receptor (H(1)-R) form part of the leptin signaling pathway in the brain, and regulate body weight and adiposity by affecting food intake and energy expenditure. The pro-opiomelanocortin (POMC)-melanocortin 4 receptor (MC4-R) is also important for leptin signaling. We investigated whether and how these two neuronal pathways interact in regulating energy metabolism. From studies of agouti yellow (A(y)/a) obese mice, a model of a defect in POMC-MC4-R signaling, we concluded that the histamine H(1)-R signaling pathway is independent of the POMC-MC4-R complex in regulating food intake, energy metabolism, and adiposity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号