首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The gram-positive lactic acid bacterium Tetragenococcus halophilus catalyzes the decarboxylation of L-aspartate (Asp) with release of L-alanine (Ala) and CO(2). The decarboxylation reaction consists of two steps: electrogenic exchange of Asp for Ala catalyzed by an aspartate:alanine antiporter (AspT) and intracellular decarboxylation of the transported Asp catalyzed by an L-aspartate-beta-decarboxylase (AspD). AspT belongs to the newly classified aspartate:alanine exchanger family (transporter classification no. 2.A.81) of transporters. In this study, we were interested in the relationship between the structure and function of AspT and thus analyzed the topology by means of the substituted-cysteine accessibility method using the impermeant, fluorescent, thiol-specific probe Oregon Green 488 maleimide (OGM) and the impermeant, nonfluorescent, thiol-specific probe [2-(trimethylammonium)ethyl]methanethiosulfonate bromide. We generated 23 single-cysteine variants from a six-histidine-tagged cysteineless AspT template. A cysteine position was assigned an external location if the corresponding single-cysteine variant reacted with OGM added to intact cells, and a position was assigned an internal location if OGM labeling required cell lysis. The topology analyses revealed that AspT has a unique topology; the protein has 10 transmembrane helices (TMs), a large hydrophilic cytoplasmic loop (about 180 amino acids) between TM5 and TM6, N and C termini that face the periplasm, and a positively charged residue (arginine 76) within TM3. Moreover, the three-dimensional structure constructed by means of the full automatic modeling system indicates that the large hydrophilic cytoplasmic loop of AspT possesses a TrkA_C domain and a TrkA_C-like domain and that the three-dimensional structures of these domains are similar to each other even though their amino acid sequences show low similarity.  相似文献   

2.
The topology of RbsC, the membrane component of the ribose transporter in Escherichia coli, has been determined by using 34 single-cysteine mutants and a modified fluorescence labeling technique designated multiplex labeling. This technique gives topology, expression, and localization information for a membrane protein from a single batch of bacterial cells. The results indicate that RbsC contains 10 transmembrane-spanning helices, with the N and C termini being in the cytosol. This topology matches predictions from the latest prediction programs and the topology of the similar, recently crystallized membrane protein BtuC.  相似文献   

3.
We constructed a single cysteine panel encompassing transmembrane helix two (TM2) of OxlT, the oxalate/formate antiporter of Oxalobacter formigenes. Among the 21 positions targeted, cysteine substitution identified one (phenylalanine 59) as essential to OxlT expression and three (glutamine 56, glutamine 66, and serine 69) as potentially critical to OxlT function. By probing membranes with a bulky hydrophilic probe (Oregon Green maleimide) we also located a central inaccessible core of at least eight residues in length, extending from leucine 61 to glycine 68. Functional assays based on reconstitution of crude detergent extracts showed that of single cysteine mutants within the TM2 core only the Q63C variant was substantially (> or =95%) inhibited by thiol-specific agents (carboxyethyl methanethiosulfonate and ethylsulfonate methanethiosulfonate). Subsequent analytical work using the purified Q63C protein showed that inhibition by ethylsulfonate methanethiosulfonate was blocked by substrate and that the concentration dependence of such substrate protection occurred with a binding constant of 0.16 mm oxalate, comparable with the Michaelis constant observed for oxalate transport (0.23 mm). These findings lead us to conclude that position 63 lies on the OxlT translocation pathway. Our conclusion is strengthened by the finding that position 63, along with most other positions relevant to TM2 function, is found on a helical face that can be cross-linked to the pathway-facing surface of TM11 (Fu, D., Sarker, R. I., Bolton, E., and Maloney, P. C. (2001) J. Biol. Chem. 276, 8753-8760).  相似文献   

4.
EmrE in Escherichia coli belongs to the small multidrug resistance (SMR) transporter family. It functions as a homo-dimer, but the orientation of the two monomers in the membrane (membrane topology) is under debate. We expressed various single-cysteine EmrE mutants in E. coli cells lacking a major efflux transporter. Efflux from cells expressing the P55C or T56C mutant was blocked by the external application of membrane-impermeable SH-reagents. This is difficult to explain by the parallel topology configuration, because Pro55 and Thr56 are considered to be located in the cytoplasm. From both the periplasm and the cytoplasm, biotin-PE-maleimide, a bulky membrane-impermeable SH-reagent, could access the cysteine residue at the 25th position in the presence of transport substrates and at the 108th position. These observations support the anti-parallel topology in the membrane.  相似文献   

5.
Experiments were designed to evaluate the proximity of transmembrane helices two (TM2) and eleven (TM11) in the tertiary structure of OxlT, the oxalate:formate exchange transporter of Oxalobacter formigenes. A tandem duplication of the Factor Xa protease cleavage site (IEGRIEGR) was inserted into the central cytoplasmic loop of an OxlT cysteine-less derivative in which an endogenous cleavage site had been eliminated by mutagenesis (R248Q). Using this host, double cysteine derivatives were constructed so as to pair one of seventeen positions in TM2 with one of four positions in TM11. Following treatment of membrane vesicles with Cu(II)(1,10-phenanthroline)(3), molecular iodine, or N,N'-o-phenylenedimaleimide, samples were exposed to Factor Xa, and disulfide bond formation was assessed after SDS-polyacrylamide gel electrophoresis by staining with antibody directed against the OxlT C terminus. In the absence of disulfide bond formation, exposure to Factor Xa revealed the expected C-terminal 22-kDa fragment, a result unaffected by the presence of reductant. By contrast, after disulfide formation, OxlT mobility remained at 35 kDa, and appearance of the 22-kDa fragment required addition of 200 mm dithiothreitol prior to electrophoresis. The four TM11 positions chosen for cysteine substitution lie on a helical face known to interact with substrate. Similarly, TM2 positions supporting disulfide trapping were also confined to a single helical face. We conclude that TM2 and TM11 are in close juxtaposition to one another in the tertiary structure of OxlT.  相似文献   

6.
SecG stimulates protein translocation in Escherichia coli by facilitating the membrane insertion-deinsertion cycle of SecA. SecG was previously shown to undergo membrane topology inversion, since SecA-dependent protein translocation renders the membrane-protected region of SecG sensitive to external proteases. To examine this topology inversion in more detail without protease-treatment, SecG derivatives with a single cysteine residue at various positions were labeled in the presence and absence of protein translocation with a membrane impermeable SH reagent, 4-acetamido-4'-maleimidylstilbene-2-2'-disulfonic acid (AMS). Treatment of spheroplasts with AMS revealed that a cysteine residue in the cytoplasmic region of SecG could be labeled from the periplasm side only in the presence of protein translocation, whereas a cytoplasmic protein, elongation factor, Tu, remained unlabeled. Treatment of inverted membrane vesicles with AMS also revealed that cysteine residues in the periplasmic region were labeled from the cytoplasmic side of membranes only when protein translocation was in progress. This labeling required ATP, SecA and a precursor protein, and became more efficient as the position of the cysteine residue became closer to the C-terminus. Crosslinking analyses revealed that the interaction between SecG and SecA in membranes markedly increases when SecA and SecG undergo membrane-insertion and topology inversion, respectively. Thus, the two most dynamic components of the translocation machinery were found for the first time to interact with each other when both undergo conformational changes.  相似文献   

7.
OxlT, the oxalate:formate antiporter of Oxalobacter formigenes, has a lone charged residue, lysine 355 (Lys-355), at the center of transmembrane helix 11 (TM11). Because Lys-355 is the only charged residue in the hydrophobic sector, we tested the hypothesis that lysine 355 contributes to the binding site for the anionic substrate, oxalate. This idea was supported by mutational analysis, which showed that of five variants studied (Lys-355 --> Cys, Gly, Gln, Arg, or Thr), residual function was found for only the K355R derivative, in which catalytic efficiency had fallen 2,600-fold. Further insight came from a study of TM11 single-cysteine mutants, using the impermeant, thiol-specific reagents, carboxyethyl methanethiosulfonate and ethyltrimethylammonium methanethiosulfonate. Of the five reactive positions identified in TM11, four were at the cytoplasmic or periplasmic ends of TM11 (S344C and A345C, and G366C and A370C, respectively), whereas the fifth was at the center of the helix (S359C). Added study with carboxyethyl methanethiosulfonate and ethylsulfonate methylthiosulfonate showed that the attack on S359C could be blocked by the presence of the substrate, oxalate, and that protection could be predicted quantitatively by a kinetic model in which S359C is accessible only in the unliganded form of OxlT. Parallel study showed that the proteoliposomes used in such work contained OxlT of right side-out and inside-out orientations in about equal amounts. Accordingly, full inhibition of S359C by the impermeable methanethiosulfonate-linked probes must reflect an approach from both the cytosolic and periplasmic surfaces of the protein. This, coupled with the finding of substrate protection, leads us to conclude that S359C lies on the translocation pathway through OxlT. Since position 359 and 355 lie on the same helical face, we suggest that Lys-355 also lies on the translocation pathway, consistent with the idea that the essential nature of Lys-355 reflects its role in binding the anionic substrate, oxalate.  相似文献   

8.
Wang X  Ye L  McKinney CC  Feng M  Maloney PC 《Biochemistry》2008,47(21):5709-5717
We constructed a single-cysteine panel encompassing TM5 of the oxalate transporter, OxlT. The 25 positions encompassed by TM5 were largely tolerant of mutagenesis, and functional product was recovered for 21 of the derived variants. For these derivatives, thiol-directed MTS-linked agents (MTSEA, MTSCE, and MTSES) were used as probes of transporter function, yielding 11 mutants that responded to probe treatment, as indicated by effects on oxalate transport. Further study identified three biochemical phenotypes among these responders. Group 1 included seven mutants, exemplified by G151C, displaying substrate protection against probe inhibition. Group 2 was comprised of a single mutant, P156C, which had unexpected behavior. In this case, we observed increased activity if weak acid/base or neutral probes were used, while exposure to probes introducing a fixed charge led to decreased function. In both instances, the presence of substrate prevented the observed response. Group 3 contained three mutants (e.g., S143C) in which probe sensitivity was increased by the presence of substrate. The finding of substrate-protectable probe modification in groups 1 and 2 suggests that TM5 lies on the permeation pathway, as do its structural counterparts, TM2, TM8, and TM11. In addition, we speculate that substrate binding facilitates TM5 conformational changes that allow new regions to become accessible to MTS-linked probes (group 3). These biochemical data are consistent with the recently developed OxlT homology model.  相似文献   

9.
Heinze M  Monden I  Keller K 《Biochemistry》2004,43(4):931-936
Transmembrane segment 1 of the cysteine-less GLUT1 glucose transporter was subjected to cysteine-scanning mutagenesis. The majority of single-cysteine mutants were functional transporters, as assessed by 2-deoxy-d-glucose uptake or 3-O-methyl-d-glucose transport. Substitution of cysteine for Leu-21, Gly-22, Ser-23, Gln-25, and Gly-27, however, led to uptake rates that were less than 10% of that of the nonmutated cysteine-less GLUT1. NEM, a membrane-permeable agent, was used to identify positions that are sensitive to transport alteration by sulfhydryl reagents, whereas uptake modification by the membrane-impermeant pCMBS indicated accessibility to water-soluble solutes from the external cell environment. Twelve of the 21 single-cysteine mutants were significantly (p < 0.01) affected by NEM, and on the basis of this sensitivity, four positions were identified by pCMBS to form a water-accessible surface within helix 1. The pCMBS-sensitive positions are localized at the exofacial C-terminal end along a circumference of the helix.  相似文献   

10.
Wang X  Sarker RI  Maloney PC 《Biochemistry》2006,45(34):10344-10350
An OxlT homology model suggests R272 and K355 in transmembrane helices 8 and 11, respectively, are critical to OxlT-mediated transport. We offer positive evidence supporting this idea by studying OxlT function after cysteine residues were separately introduced at these positions. Without further treatment, both mutant proteins had a null phenotype when they were reconstituted into proteoliposomes. By contrast, significant recovery of function occurred when proteoliposomes were treated with MTSEA (methanethiosulfonate ethylamine), a thiol-specific reagent that implants a positively charged amino group. In each case, there was a 2-fold increase in the Michaelis constant (K(M)) for oxalate self-exchange (from 80 to 160 microM), along with a 5-fold (K355C) or 100-fold (R272C) reduction in V(max) compared to that of the cysteine-less parental protein. Analysis by MALDI-TOF confirmed that MTSEA introduced the desired modification. We also examined substrate selectivity for the treated derivatives. While oxalate remained the preferred substrate, there was a shift in preference among other substrates so that the normal rank order (oxalate > malonate > formate) was altered to favor smaller substrates (oxalate > formate > malonate). This shift is consistent with the idea that the substrate-binding site is reduced in size via introduction of the SCH(2)CH(2)NH(3)(+) adduct, which generates a side chain that is approximately 1.85 A longer than that of lysine or arginine. These findings lead us to conclude that R272 and K355 are essential components of the OxlT substrate-binding site.  相似文献   

11.
Site-directed mutagenesis provides a straightforward means of creating specific targets for chemical modifications of proteins. This capability enhanced the applications of spectroscopic methods adapted for addressing specific structural questions such as the characterization of partially folded and transient intermediate structures of globular proteins. Some applications such as the steady state or time-resolved fluorescence resonance energy transfer (FRET) detection of the kinetics of protein folding require relatively large quantities (approximately 10-100 mg) of site-specific doubly labeled protein samples. Engineered cysteine residues are common targets for labeling of proteins. The challenge here is to develop methods for selective modification of one of two reactive sulfhydryl groups in a protein molecule. A general systematic procedure for selective labeling of each of two cysteine residues in a protein molecule was developed, using Escherichia coli adenylate kinase (AKe) as a model protein. Potential sites for insertion of cysteine residues were selected by examination of the crystal structure of the protein. A series of single-cysteine mutants was prepared, and the rates of the reaction of each engineered cysteine residue with a reference reagent [5,5'-dithiobis(2-nitrobenzoic acid) (DTNB)] were determined. Two-cysteine mutants were prepared by selection of pairs of sites for which the ratio of this reaction rate constant was high (>80). The conditions for the selective labeling reaction were optimized. In a first cycle of labeling, the more reactive cysteine residue was labeled with a fluorescent probe (donor). The second probe was attached to the less reactive site under unfolding conditions in the second cycle of labeling. The doubly and singly labeled mutants retained full enzymatic activity and the capacity for a reversible folding-unfolding transition. High yields (70-90%) of the preparation of the pure, site-specific doubly labeled AK mutant were obtained. The procedure described herein is a general outline of procedures, which can meet the double challenge of both site specificity and large-scale preparation of doubly labeled proteins.  相似文献   

12.
OxlT, the oxalate transporter of Oxalobacter formigenes, was studied to determine its oligomeric state in solution and in the membrane. Three independent approaches were used. First, we used triple-detector (SEC-LS) size exclusion chromatography to analyze purified OxlT in detergent/lipid micelles. These measurements evaluate protein mass in a manner independent of contributions from detergent and lipid; such work shows an average OxlT mass near 47 kDa for detergent-solubilized material, consistent with that expected for monomeric OxlT (46 kDa). A disulfide-linked OxlT mutant was used to verify that it was possible detect dimers under these conditions. A second approach used amino-reactive cross-linkers of varying spacer lengths to study OxlT in detergent/lipid micelles and in natural or artificial membranes, followed by analysis via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These tests, performed under conditions where the presence of dimers can be documented for either of two known dimeric transporters (AdiC or TetL), indicate that OxlT exists as a monomer in the membrane and retains this status upon detergent solubilization. In a final test, we showed that reconstitution of OxlT into lipid vesicles at variable protein/lipid ratios has no effect on the specific activity of subsequent oxalate transport, as the OxlT content varies between 0.027 and 5.4 OxlT monomers/proteoliposome. We conclude that OxlT is a functional monomer in the membrane and in detergent/lipid micelles.  相似文献   

13.
T Weimbs  W Stoffel 《Biochemistry》1992,31(49):12289-12296
Proteolipid protein (PLP), the major integral membrane protein of central nervous system myelin, contains 14 cysteine residues within its 276-residue polypeptide chain. We determined the state of all cysteine residues and localized four of them as free thiols at positions 24, 32, 34, and 168. Four cysteines are connected by disulfide bonds: Cys200-Cys219 and Cys183-Cys227. The remaining six cysteine residues at positions 5, 6, 9, 108, 138, and 140 are modified by long-chain fatty acids, mainly palmitic acid, in thioester linkage. The extreme hydrophobicity of PLP can therefore be explained by two structural features: a composition of approximately 50% apolar amino acid residues and a high degree of fatty acid acylation. A differential fluorescent-labeling technique was developed for the structural studies: the cysteine residues belonging to one of the three states were derivatized by N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (I-AEDANS) either directly (a), after thioester cleavage with hydroxylamine (b), or after disulfide cleavage with dithiothreitol (c). The protein was then proteolytically digested with thermolysin, and the labeled peptides were isolated by reversed-phase HPLC followed by sequence analysis. The results were further confirmed by determination of the fatty acid to protein stoichiometry. The structural data not only demand the revision of our concept of the membrane topology of PLP but will also promote more sophisticated studies on the mechanism of myelination and new functions of PLP.  相似文献   

14.
The work presented here describes a new and simple method based on site-directed fluorescence labeling using the BADAN label that permits the examination of protein-lipid interactions in great detail. We applied this technique to a membrane-embedded, mainly α-helical reference protein, the M13 major coat protein. Using a high-throughput approach, 40 site-specific cysteine mutants were prepared of the 50-residues long protein. The steady-state fluorescence spectra were analyzed using a three-component spectral model that enabled the separation of Stokes shift contributions from water and internal label dynamics, and protein topology. We found that most of the fluorescence originated from BADAN labels that were hydrogen-bonded to water molecules even within the hydrophobic core of the membrane. Our spectral decomposition method revealed the embedment and topology of the labeled protein in the membrane bilayer under various conditions of headgroup charge and lipid chain length, as well as key characteristics of the membrane such as hydration level and local polarity, provided by the local dielectric constant.  相似文献   

15.
The major facilitator superfamily (MFS) represents the largest collection of evolutionarily related members within the class of membrane 'carrier' proteins. OxlT, a representative example of the MFS, is an oxalate-transporting membrane protein in Oxalobacter formigenes. From an electron crystallographic analysis of two-dimensional crystals of OxlT, we have determined the projection structure of this membrane transporter. The projection map at 6 A resolution indicates the presence of 12 transmembrane helices in each monomer of OxlT, with one set of six helices related to the other set by an approximate internal two-fold axis. The projection map reveals the existence of a central cavity, which we propose to be part of the pathway of oxalate transport. By combining information from the projection map with related biochemical data, we present probable models for the architectural arrangement of transmembrane helices in this protein superfamily.  相似文献   

16.
The membrane topology of proton-pumping nicotinamide-nucleotide transhydrogenase from Escherichia coli was determined by site-specific chemical labeling. A His-tagged cysteine-free transhydrogenase was used to introduce unique cysteines in positions corresponding to potential membrane loops. The cysteines were reacted with fluorescent reagents, fluorescein 5-maleimide or 2-[(4'-maleimidyl)anilino]naphthalene-6-sulfonic acid, in both intact cells and inside-out vesicles. Labeled transhydrogenase was purified with a small-scale procedure using a metal affinity resin, and the amount of labeling was measured as fluorescence on UV-illuminated acrylamide gels. The difference in labeling between intact cells and inside-out vesicles was used to discriminate between a periplasmic and a cytosolic location of the residues. The membrane region was found to be composed of 13 helices (four in the alpha-subunit and nine in the beta-subunit), with the C terminus of the alpha-subunit and the N terminus of the beta-subunit facing the cytosolic and periplasmic sides, respectively. These results differ from previous models with regard to both number of helices and the relative location and orientation of certain helices. This study constitutes the first in which all transmembrane segments of transhydrogenase have been experimentally determined and provides an explanation for the different topologies of the mitochondrial and E. coli transhydrogenases.  相似文献   

17.
The mannitol permease (EII(Mtl)) from Escherichia coli couples mannitol transport to phosphorylation of the substrate. Renewed topology prediction of the membrane-embedded C domain suggested that EII(Mtl) contains more membrane-embedded segments than the six proposed previously on the basis of a PhoA fusion study. Cysteine accessibility was used to confirm this notion. Since cysteine 384 in the cytoplasmic B domain is crucial for the phosphorylation activity of EII(Mtl), all cysteine mutants contained this activity-linked cysteine residue in addition to those introduced for probing the membrane topology of the protein. To distinguish between the activity-linked cysteine and the probed cysteine, either trypsin was used to specifically digest the two cytoplasmic domains (A and B), thereby removing Cys384, or Cys384 was protected by phosphorylation from alkylation by N-ethylmaleimide (NEM). Our data show that upon phosphorylation EII(Mtl) undergoes major conformational changes, whereby residues in the putative first cytoplasmic loop become accessible to NEM. Other residues in this loop were accessible to NEM in intact cells and inside-out membrane vesicles, but cysteine residues at these positions only reacted with the membrane-impermeable sulfhydryl reagent from the periplasmic side of the protein. These and other results suggest that the predicted loop between TM2 and TM3 may fold back into the membrane and form part of the translocation path.  相似文献   

18.
We had proposed earlier that the anaerobe Oxalobacter formigenes sustains a proton-motive force by exploiting a secondary carrier rather than a primary proton pump. In this view, a carrier protein would catalyze the exchange of extracellular oxalate, a divalent anion, and intracellular formate, the monovalent product of oxalate decarboxylation. Such an electrogenic exchange develops an internally negative membrane potential, and since the decarboxylation reaction consumes an internal proton, the combined activity of the carrier and the soluble decarboxylase would constitute an "indirect" proton pump with a stoichiometry of 1H+ per turnover. This model is now verified by identification and purification of OxlT, the protein responsible for the anion exchange reaction. Membranes of O. formigenes were solubilized at pH 7 with 1.25% octyl glucoside in 20 mM 3-(N-morpholino)propanesulfonic acid/K, in the presence of 0.4% Escherichia coli phospholipids and with 20% glucerol present as the osmolyte stabilant. Rapid methods for reconstitution were developed to monitor the distribution of OxlT during biochemical fractionation, allowing its purification by sequential anion and cation exchange chromatography. OxlT proved to be a single hydrophobic polypeptide, of 38 kDa mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with a turnover number estimated as at least 1000/s. The properties of OxlT point to an indirect proton pump as the mechanism by which a proton-motive force arises in O. formigenes, and one may reasonably argue that indirect proton pumps take part in bacterial events such as acetogenesis, malolactate fermentation, and perhaps methanogenesis.  相似文献   

19.
Mass spectrometry of disaccharides in the negative-ion mode frequently generates product anions of m/z 221. With glucose-containing disaccharides, dissociation of isolated m/z 221 product ions in a Paul trap yielded mass spectra that easily differentiated between both anomeric configurations and ring forms of the ions. These ions were shown to be glucosyl-glycolaldehydes through chemical synthesis of their standards. By labeling the reducing carbonyl oxygen of disaccharides with 18O to mass discriminate between monosaccharides, it was established that the m/z 221 ions are comprised solely of an intact nonreducing sugar with a two-carbon aglycon derived from the reducing sugar, regardless of the disaccharide linkage position. This enabled the anomeric configuration and ring form of the ion to be assigned and the location of the ion to the nonreducing side of a glycosidic linkage to be ascertained. Detailed studies of experimental factors necessary for reproducibility in a Paul trap demonstrated that the unique dissociation patterns that discriminate between the isomeric m/z 221 ions could be obtained from month-to-month in conjunction with an internal energy-input calibrant ion that ensures reproducible energy deposition into isolated m/z 221 ions. In addition, MS/MS fragmentation patterns of disaccharide m/z 341 anions in a Paul trap enabled linkage positions to be assigned, as has been previously reported with other types of mass spectrometers.  相似文献   

20.
The topology of the long N-terminal domain (∼100 amino-acid residues) of the photosynthetic Lhc CP29 was studied using electron spin resonance. Wild-type protein containing a single cysteine at position 108 and nine single-cysteine mutants were produced, allowing to label different parts of the domain with a nitroxide spin label. In all cases, the apoproteins were either solubilized in detergent or they were reconstituted with their native pigments (holoproteins) in vitro. The spin-label electron spin resonance spectra were analyzed in terms of a multicomponent spectral simulation approach, based on hybrid evolutionary optimization and solution condensation. These results permit to trace the structural organization of the long N-terminal domain of CP29. Amino-acid residues 97 and 108 are located in the transmembrane pigment-containing protein body of the protein. Positions 65, 81, and 90 are located in a flexible loop that is proposed to extend out of the protein from the stromal surface. This loop also contains a phosphorylation site at Thr81, suggesting that the flexibility of this loop might play a role in the regulatory mechanisms of the light-harvesting process. Positions 4, 33, 40, and 56 are found to be located in a relatively rigid environment, close to the transmembrane protein body. On the other hand, position 15 is located in a flexible region, relatively far away from the transmembrane domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号