首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RNAs encoding a wild-type (RBK1) and a mutant (RBK1(Y379V,V381T); RBK1*) subunit of voltage-dependent potassium channels were injected into Xenopus oocytes. When expressed separately, they made homotetrameric channels that differed about 100-fold in sensitivity to tetraethylammonium (TEA). Mixtures of channels having one, two, or three low affinity subunits were expressed by injecting various proportions of RBK1 and RBK1* RNAs. The affinity for TEA of these three channel species was deduced by fitting concentration-response curves for the inhibition of potassium currents. DNAs were also concatenated to construct a sequence that encoded two connected subunits, and channels that contained four, two, or no TEA-sensitive subunits were expressed. The results suggest that bound TEA interacts simultaneously with all four subunits.  相似文献   

2.
Tetraethylammonium ion (TEA+) blocks voltage-gated K+ channels by acting at two sites located at opposite ends of the aqueous pore. This allowed us to test two predictions made by models of ion permeation, namely that K+ channels can be simultaneously occupied by multiple ions and that the ions repel each other. We show that externally applied TEA+ antagonize block by internal TEA+ and vice versa. The antagonism is less than predicted for competitive binding, hence TEA+ may occupy both sites simultaneously. External TEA+ and internal TEA+ reduce each others affinity 4- to 5-fold. In addition, K+ antagonizes block by TEA+ at the opposite side of the membrane, and external TEA+ antagonizes is block by internal Ba2+. The antagonism between ions applied at opposite sides of the membrane may be common to all cations binding to K+ channels.  相似文献   

3.
The actions of divalent cations on voltage-gated ion channels suggest that these cations bind to specific sites and directly influence gating kinetics. We have examined some chemical properties of the external divalent cation binding sites on neuronal potassium channels. Patch clamp techniques were used to measure the electrophysiological properties of these channels and Zn ions were used to probe the divalent cation binding site. The channel activation kinetics were greatly (three- to fourfold) slowed by low (2-5 mM) concentrations of Zn; deactivation kinetics were only slightly affected. These effects of Zn were inhibited by low solution pH in a manner consistent with competition between Zn and H ions for a single site. The apparent inhibitory pK for this site was near 7.2. Treatment of the neurons with specific amino acid reagents implicated amino, but no histidyl or sulfhydryl, residues in divalent cation binding.  相似文献   

4.
We have mapped residues in the carboxyl half of the P region of a voltage-gated K+ channel that influence external tetraethylammonium (TEA) block. Fifteen amino acids were substituted with cysteine and expressed in oocytes from monomeric or heterodimeric cRNAs. From a total of six mutant channels with altered TEA sensitivity, three were susceptible to modification by extracellularly applied charged methanethiosulfonates (MTSX). Another residue did not affect TEA block but was protected from MTSX by TEA. MTSX modification of position Y380C, thought to form the TEA binding site, affected TEA affinity only moderately, and this effect could be reversed by additional charge transfer from an oppositely charged MTSX analog. The results show that TEA block is modulated from multiple sites, including residues located deep in the pore and that several side chains besides that of Y380 are exposed at the TEA receptor.  相似文献   

5.
The location of the tetraethylammonium (TEA) binding site in the outer vestibule of K+ channels, and the mechanism by which external TEA slows C-type inactivation, have been considered well-understood. The prevailing model has been that TEA is coordinated by four amino acid side chains at the position equivalent to Shaker T449, and that TEA prevents a constriction that underlies inactivation via a foot-in-the-door mechanism at this same position. However, a growing body of evidence has suggested that this picture may not be entirely correct. In this study, we reexamined these two issues, using both the Kv2.1 and Shaker potassium channels. In contrast to results previously obtained with Shaker, substitution of the tyrosine at Kv2.1 position 380 (equivalent to Shaker 449) with a threonine or cysteine had a relatively minor effect on TEA potency. In both Kv2.1 and Shaker, modification of cysteines at position 380/449 by 2-(trimethylammonium)ethyl methanethiosulfonate (MTSET) proceeded at identical rates in the absence and presence of TEA. Additional experiments in Shaker demonstrated that TEA bound well to C-type inactivated channels, but did not interfere with MTSET modification of C449 in inactivated channels. Together, these findings rule out the possibility that TEA binding involves an intimate interaction with the four side chains at the position equivalent to Shaker 449. Moreover, these results argue against the model whereby TEA slows inactivation via a foot-in-the-door mechanism at position 449, and also argue against the hypothesis that the position 449 side chains move toward the center of the conduction pathway during inactivation. Occupancy by TEA completely prevented MTSET modification of a cysteine in the outer-vestibule turret (Kv2.1 position 356/Shaker position 425), which has been shown to interfere with both TEA binding and the interaction of K+ with an external binding site. Together, these data suggest that TEA is stabilized in a more external position in the outer vestibule, and does not bind via direct coordination with any specific outer-vestibule residues.  相似文献   

6.
We present a model for the action of 4-aminopyridine (4AP) on K channels. The model is closely based on the gating current studies of the preceding paper and has been extended to account for ionic current data in the literature. We propose that 4AP, like tetraethylammonium ion and other quaternary ammonium ions, enters and leaves the channel only when the activation gate is open, a proposal that is strongly supported by the literature. Once in the open channel, 4AP's major action is to bias the activation gate toward the closed conformation by approximately the energy of a hydrogen bond. S4 segment movement, as reflected in gating currents, is almost normal for a 4AP-occupied channel; only the final opening transition is affected. The model is qualitatively the same as the one used for many years to explain the action of quaternary ammonium ions.  相似文献   

7.
The block by the symmetric tetraethylammonium (TEA) ion derivatives tetrapropylammonium (TPrA), tetrabutylammonium (TBA), and tetrapentylammonium (TPeA) ions of fast chloride channels in acutely dissociated rat cortical neurons was studied with the excised inside- out configuration of the patch-clamp technique. When applied to the intracellular membrane surface, all three of the quaternary ammonium compounds (QAs) induced the appearance of short-lived closed states in a manner consistent with a blocking mechanism where the blocker preferentially binds to the open kinetic state and completely blocks ion current through the channel. The drug must leave the channel before the channel can return to a closed state. The mechanism of block was studied using one-dimensional dwell-time analysis. Kinetic models were fit to distributions of open and closed interval durations using the Q- matrix approach. The blocking rate constants for all three of the QAs were similar with values of approximately 12-20 x 10(6) M-1s-1. The unblocking rates were dependent on the size or hydrophobicity of the QA with the smallest derivative, TPrA, inducing a blocked state with a mean lifetime of approximately 90 microseconds, while the most hydrophobic derivative, TPeA, induced a blocked state with a mean lifetime of approximately 1 ms. Thus, it appears as though quaternary ammonium ion block of these chloride channels is nearly identical to the block of many potassium channels by these compounds. This suggests that there must be structural similarities in the conduction pathway between anion and cation permeable channels.  相似文献   

8.
In voltage clamp experiments, externally applied tetraethylammonium ion (TEA) was found to have minimal effects on transient sodium currents and to suppress steady-state potassium currents of Myxicola giant axons by causing a specific decrease in the maximum potassium conductance gK. The dose-response curve suggests a one-to-one stoichiometry for TEA-receptor binding with an apparent dissociation constant on 24 mM. The suppression of IK is essentially reversible. Experiments performed on high external potassium ion concentrations indicate that both outward and inward IK were blocked by external TEA. The results thus suggest the presence of TEA receptors on the outer surface of Myxicola axonal membrane similar to those reported in the frog node.  相似文献   

9.
Luzhkov VB  Aqvist J 《FEBS letters》2001,495(3):191-196
We report results from automated docking and microscopic molecular dynamics simulations of the tetraethylammonium (TEA) complexes with KcsA. Binding modes and energies for TEA binding at the external and internal sides of the channel pore are examined utilising the linear interaction energy method. Effects of the channel ion occupancy (based on our previous results for the ion permeation mechanisms) on the binding energies are considered. Calculations show that TEA forms stable complexes at both the external and internal entrances of the selectivity filter. Furthermore, the effects of the Y82V mutation are evaluated and the results show, in agreement with experimental data, that the mutant has a significantly reduced binding affinity for TEA at the external binding site, which is attributed to stabilising hydrophobic interactions between the ligand and the tyrosines.  相似文献   

10.
The inhibition of rabbit muscle glycogen phosphorylase b (1,4-alpha-D-glucan--orthophosphate alpha-glucosyltransferase, EC 2.4.1.1) by aromatic compounds was examined with 15 compounds. The relative effectiveness of the inhibitors correlated well with increasing substituent constant, pi, indicating the hydrophobic nature of the binding site. The inhibition was not affected by the ionic-strength variation of the assay mixtures. The results predict that the course of chemical modification of this enzyme and the properties of the derivatives depend on the nature of the reagent and on the incorporated groups. Many of the dissimilar and sometimes contradictory results reported for chemical-modification studies and for chemically modified phosphorylase b are explained by the findings presented in the paper.  相似文献   

11.
All the minimum-energy conformations of d-tubocurarine were calculated by the method of molecular mechanics. The energy was minimized from 413 closed forms of the 18-member ring. The set of minimum-energy conformations includes 10 forms with energies less than 6 kcal/mol from the most stable one. Among the four lowest minimum-energy conformations, two forms correspond to those known from X-ray studies, whereas two conformations were not detected experimentally earlier. The flexibility of d-tubocurarine was estimated by calculating six paths of interconversion between the four lowest minimum-energy conformations. Using a molecular graphics technique, it was found that the most extended minimum-energy conformation of d-tubocurarine may fit in an ion channel of a rectangular profile of 8.7 × 11.2 Å, while one tetrahydroisoquinoline head may fit a profile as small as 6.9 × 11.0 Å. A possible model of d-tubocurarine location within the ion channel of the neuronal nicotinic acetylcholine receptor is suggested.  相似文献   

12.
Nimigean CM  Chappie JS  Miller C 《Biochemistry》2003,42(31):9263-9268
Members of the K(+) channel family display remarkable conservation of sequence and structure of the ion selectivity filter, whereas the rates of K(+) turnover vary widely within the family. Here we show that channel conductance is strongly influenced by charge at the channel's intracellular mouth. Introduction of a ring of negative charges at this position in KcsA, a bacterial K(+) channel, augments the conductance in a pH-dependent manner. These results are explained by a simple electrostatic effect based on known channel structures, where the negative charges serve to alter the electrical potential at the inner mouth and, thus, to increase the local K(+) concentration. In addition, removal of the conserved negative charges at equivalent positions in a high-conductance eukaryotic K(+) channel leads to a decrease in conductance.  相似文献   

13.
External tetraethylammonium (TEA+) blocked currents through Kv1.1 channels in a voltage-independent manner between 0 and 100 mV. Lowering extracellular pH (pHo) increased the Kd for TEA+ block. A histidine at position 355 in the Kv1.1 channel protein (homologous to Shaker 425) was responsible for this pH-dependent reduction of TEA+ sensitivity, since the TEA+ effect became independent of pHo after chemical modification of the Kv1.1 channel at H355 and in the H355G and H355K mutant Kv1.1 channels. The Kd values for TEA+ block of the two mutant channels (0.34 +/- 0.06 mM, n = 7 and 0.84 +/- 0. 09 mM, n = 13, respectively) were as expected for a vestibule containing either no or a total of four positive charges at position 355. In addition, the pH-dependent TEA+ effect in the wt Kv1.1 channel was sensitive to the ionic strength of the solution. All our observations are consistent with the idea that lowering pHo increased protonation of H355. This increase in positive charge at H355 will repel TEA+ electrostatically, resulting in a reduction of the effective [TEA+]o at the receptor site. From this reduction we can estimate the distance between TEA+ and each of the four histidines at position 355 to be approximately 10 A, assuming fourfold symmetry of the channel and assuming that TEA+ binds in the central axis of the pore. This determination of the dimensions of the outer vestibule of Kv1.1 channels confirms and extends earlier reports on K+ channels using crystal structure data as well as peptide toxin/channel interactions and points out a striking similarity between vestibules of Kv1.1 and KcsA channels.  相似文献   

14.
The effect of Gd3+ on the nuclear magnetic resonance (nmr) relaxation rates, T1m?1 and T2m?1, of inhibitor protons in metal-inhibitor-α-chymotrypsin ternary complexes has been measured. The Solomon-Bloembergen equations were used to calculate the distance from the methyl protons of p-toluamidine (a competitive inhibitor) to the Gd3+ binding site which is 9.2 ± 0.5 Å. Calcium ion and gadolinium ion compete for the same binding site on α-chymotrypsin. Distances from the specificity pocket of α-chymotrypsin to the metal binding site have been measured by fluorescence energy transfer experiments. By observing energy transfer between proflavine and Nd3+, Pr3+, or Ho3+, we have been able to calculate a distance of approximately 10 Å between the two chromophores. This agrees well with the data obtained by nmr techniques and also gives nearly identical values to those obtained for trypsin (Darnall, D., Abbott, F., Gomez, J. E., and Birnbaum, E. R., Biochemistry15, 5017, 1976). This is consistent with the calcium ion binding sites being composed of the same residues in both trypsin and α-chymotrypsin.  相似文献   

15.
Antiamoebin (AAM) is a polypeptide antibiotic that is capable of forming ion channels in phospholipid membranes: planar bilayer studies have suggested the channels are octamers. The crystal structure of a monomeric form of AAM has provided the basis for molecular modelling of an octameric helical bundle channel. The channel model is funnel-shaped due to a substantial bend in the middle of the polypeptide chain caused by the presence of several imino acids. Inter-monomer hydrogen bonds orientate a ring of glutamine side chains to form a constriction in the pore lumen. The channel lumen is lined both by side chains of Gln11 and by polypeptide backbone carbonyl groups. Electrostatic calculations on the model are compatible with a channel that transports cations across membranes. The AAM channel model is compared with the crystal structures of two bacterial (KcsA andMthK) potassium channels. AAM and the potassium channels exhibit common functional features, such as cation-selectivity and similar single channel conductances. Common structural features include being multimers, each formed from a bundle of eight transmembrane helices, with lengths roughly comparable to the thickness of lipid bilayers. In addition, they all have aromatic amino acids that lie at the bilayer interfaces and which may aid in the stabilization of the transmembrane helices, as well as narrower constrictions that define the ion binding sites or selectivity filters in the pore lumen. The commonality of structural and functional features in these channels thus suggests that antiamoebin is a good, simple model for more complex bacterial and eukaryotic ion channels, capable of providing insight into details of the mechanisms of ion transport and multimeric channel stability.  相似文献   

16.
We have examined the interaction between TEA and K+ ions in the pore of Shaker potassium channels. We found that the ability of external TEA to antagonize block of Shaker channels by internal TEA depended on internal K+ ions. In contrast, this antagonism was independent of external K+ concentrations between 0.2 and 40 mM. The external TEA antagonism of internal TEA block increased linearly with the concentration of internal K+ ions. In addition, block by external TEA was significantly enhanced by increases in the internal K+ concentration. These results suggested that external TEA ions do not directly antagonize internal TEA, but rather promote increased occupancy of an internal K+ site by inhibiting the emptying of that site to the external side of the pore. We found this mechanism to be quantitatively consistent with the results and revealed an intrinsic affinity of the site for K+ ions near 65 mM located approximately 7% into the membrane electric field from the internal end of the pore. We also found that the voltage dependence of block by internal TEA was influenced by internal K+ ions. The TEA site (at 0 internal K+) appeared to sense approximately 5% of the field from the internal end of the pore (essentially colocalized with the internal K+ site). These results lead to a refined picture of the number and location of ion binding sites at the inner end of the pore in Shaker K channels.  相似文献   

17.
Tetraethylammonium ion (TEA) and its longer chain derivatives have been used extensively to block currents through K-selective ion channels. Substantial information has been gained about the structure and gating mechanisms of K and other cation channels from the analysis of the blocking interactions of TEA and other quaternary ammonium ions. We now present an analysis of blocking interactions between single Cl-selective ion channels from acutely dissociated rat cortical neurons and externally applied TEA. TEA applied to the extracellular membrane surface (TEAo) blocked Cl channels in a voltage-dependent manner, with hyperpolarizing potentials favoring block. The voltage dependence of block could be adequately fit assuming that TEA enters the channel pore and binds to a site located approximately 28% of the way through the membrane electrical field. The dose-response relationship between fractional current and [TEA]o at a fixed holding potential of -40 mV was well fit to a simple model with two blocking sites with dissociation constants (Kd) of approximately 2 and 70 mM. The dose-response relationship could also be fit by a mechanism where TEA only partially blocks the channels. At the bandwidth used in these experiments (1-2 kHz), both the mean open duration (composed of the open and blocked durations) and burst duration (composed of open, blocked, and short lifetime shut durations) increased with increased [TEA]o. This is expected if TEAo can bind and unbind only when the channel is in the open kinetic state. These results suggest that the structure of the permeability pathway of these anion-selective channels may be very similar to that of other channels that are blocked by TEA. Additionally, these results caution that a blocking effect by TEA cannot, by itself, be used as sufficient evidence for implicating the participation of K channels in a particular process.  相似文献   

18.
Strongly inwardly rectifying potassium channels exhibit potent and steeply voltage-dependent block by intracellular polyamines. To locate the polyamine binding site, we have examined the effects of polyamine blockade on the rate of MTSEA modification of cysteine residues strategically substituted in the pore of a strongly rectifying Kir channel (Kir6.2[N160D]). Spermine only protected cysteines substituted at a deep location in the pore, between the "rectification controller" residue (N160D in Kir6.2, D172 in Kir2.1) and the selectivity filter, against MTSEA modification. In contrast, blockade with a longer synthetic polyamine (CGC-11179) also protected cysteines substituted at sites closer to the cytoplasmic entrance of the channel. Modification of a cysteine at the entrance to the inner cavity (169C) was unaffected by either spermine or CGC-11179, and spermine was clearly "locked" into the inner cavity (i.e., exhibited a dramatically slower exit rate) following modification of this residue. These data provide physical constraints on the spermine binding site, demonstrating that spermine stably binds at a deep site beyond the "rectification controller" residue, near the extracellular entrance to the channel.  相似文献   

19.
Acid sensing ion channels (ASICs), Ca2+ and voltage-activated potassium channels (BK) are widely present throughout the central nervous system. Previous studies have shown that when expressed together in heterologous cells, ASICs inhibit BK channels, and this inhibition is relieved by acidic extracellular pH. We hypothesized that ASIC and BK channels might interact in neurons, and that ASICs may regulate BK channel activity. We found that ASICs inhibited BK currents in cultured wild-type cortical neurons, but not in ASIC1a/2/3 triple knockout neurons. The inhibition in the wild-type was partially relieved by a drop in extracellular pH to 6. To test the consequences of ASIC-BK interaction for neuronal excitability, we compared action potential firing in cultured cortical neurons from wild-type and ASIC1a/2/3 null mice. We found that in the knockout, action potentials were narrow and exhibited increased after-hyperpolarization. Moreover, the excitability of these neurons was significantly increased. These findings are consistent with increased BK channel activity in the neurons from ASIC1a/2/3 null mice. Our data suggest that ASICs can act as endogenous pH-dependent inhibitors of BK channels, and thereby can reduce neuronal excitability.  相似文献   

20.
D N Parcej  V E Scott  J O Dolly 《Biochemistry》1992,31(45):11084-11088
Neuronal acceptors for alpha-dendrotoxin (alpha-DTX) have recently been purified from mammalian brain and shown to consist of two classes of subunit, a larger (approximately 78,000 M(r)) protein (alpha) whose N-terminal sequence is identical to that of a cloned, alpha-DTX-sensitive K+ channel, and a novel M(r) 39,000 (beta) polypeptide of unknown function. However, little information is available regarding the oligomeric composition of these native molecules. By sedimentation analysis of alpha-DTX acceptors isolated from bovine cortex, two species have been identified. A minority of these oligomers contain only the larger protein, while the vast majority possess both subunits. Based on accurate determination of the molecular weights of these two forms it is proposed that alpha-DTX-sensitive K+ channels exist as alpha 4 beta 4 complexes because this combination gives the best fit to the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号