首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the leaf apoplast in iron (Fe) uptake into the leaf symplast is insufficiently understood, particularly in relation to the supposed inactivation of Fe in leaves caused by elevated bicarbonate in calcareous soils. It has been supposed that high bicarbonate supply to roots increases the pH of the leaf apoplast which decreases the physiological availability of Fe in leaf tissues. The study reported here has been carried out with sunflower plants grown in nutrient solution and with grapevine plants grown on calcareous soil under field conditions. The data obtained clearly show that the pH of the leaf apoplastic fluid was not affected by high bicarbonate supply in the root medium (nutrient solution and field experiments). The concentrations of total, symplastic and apoplastic Fe were decreased in chlorotic leaves of both sunflower (nutrient solution experiment) and grapevine plants in which leaf expansion was slightly inhibited (field experiment). However, in grapevine showing severe inhibition of leaf growth, total Fe concentration in chlorotic leaves was the same or even higher than in green ones, indicative to the so-called `chlorosis paradox'. The findings do not support the hypothesis of Fe inactivation in the leaf apoplast as the cause of Fe deficiency chlorosis since no increase was found in the relative amount of apoplastic Fe (% of total leaf Fe) either in the leaves of sunflower or grapevine plants. It is concluded that high bicarbonate concentration in the soil solution does not decrease Fe availability in the leaf apoplast.  相似文献   

2.
Iron availability in plant tissues-iron chlorosis on calcareous soils   总被引:3,自引:1,他引:2  
Konrad Mengel 《Plant and Soil》1994,165(2):275-283
The article describes factors and processes which lead to Fe chlorosis (lime chlorosis) in plants grown on calcareous soils. Such soils may contain high HCO3 - concentrations in their soil solution, they are characterized by a high pH, and they rather tend to accumulate nitrate than ammonium because due to the high pH level ammonium nitrogen is rapidly nitrified and/or even may escape in form of volatile NH3. Hence in these soils plant roots may be exposed to high nitrate and high bicarbonate concentrations. Both anion species are involved in the induction of Fe chlorosis.Physiological processes involved in Fe chlorosis occur in the roots and in the leaves. Even on calcareous soils and even in plants with chlorosis the Fe concentration in the roots is several times higher than the Fe concentration in the leaves. This shows that the Fe availability in the soil is not the critical process leading to chlorosis but rather the Fe uptake from the root apoplast into the cytosol of root cells. This situation applies to dicots as well as to monocots. Iron transport across the plasmamembrane is initiated by FeIII reduction brought about by a plasmalemma located FeIII reductase. Its activity is pH dependent and at alkaline pH supposed to be much depressed. Bicarbonate present in the root apoplast will neutralize the protons pumped out of the cytosol and together with nitrate which is taken up by a H+/nitrate cotransport high pH levels are provided which hamper or even block the FeIII reduction.Frequently chlorotic leaves have higher Fe concentrations than green ones which phenomenon shows that chlorosis on calcareous soils is not only related to Fe uptake by roots and Fe translocation from the roots to the upper plant parts but also dependent on the efficiency of Fe in the leaves. It is hypothesized that also in the leaves FeIII reduction and Fe uptake from the apoplast into the cytosol is affected by nitrate and bicarbonate in an analogous way as this is the case in the roots. This assumption was confirmed by the highly significant negative correlation between the leaf apoplast pH and the degree of iron chlorosis measured as leaf chlorophyll concentration. Depressing leaf apoplast pH by simply spraying chlorotic leaves with an acid led to a regreening of the leaves.  相似文献   

3.
Missing methane emissions from leaves of terrestrial plants   总被引:2,自引:0,他引:2  
The controversial claim that attached leaves of terrestrial plants emit CH4 aerobically remains to be corroborated. Here, we report CH4 fluxes and CO2 exchange rates for leaves of the C4 species Zea mays using a high-accuracy traceable online analytical system. In contrast to earlier results for Z. mays , our measurements provide no evidence for substantial aerobic CH4 emissions from photosynthesizing leaves illuminated with photosynthetically active radiation ( λ =400–700 nm), or from dark-respiring leaves. Preliminary measurements with the same system indicated a similar lack of aerobic CH4 emissions in the light or dark from leaves of the C3 species Nicotiana tabacum . These findings are supported by independent high-precision 13C-labeling studies that also failed to confirm substantial aerobic CH4 emissions from plants. Nevertheless, we are not able to exclude the possibility that CH4 emissions from plants may be linked to nonenzymatic processes with an action spectrum lying outside the wavelength range for photosynthesis.  相似文献   

4.
Bohórquez  J.M.  Romera  F.J.  Alcántara  E. 《Plant and Soil》2001,237(1):157-163
The peach rootstock Nemaguard is susceptible to lime-induced iron deficiency chlorosis. Under field conditions, application of ferric chelates to the soil is effective in correcting the Fe-deficiency symptoms. The objectives of this work were to study the induction of the root ferric reducing capacity and the relationship between chlorosis and leaf Fe concentration of plants grown hydroponically under different treatments. Results showed that bicarbonate-treated plants grown with a low Fe concentration increased their reducing capacity if they received additional Fe or Zn for a short period (15 h). However, the addition of Mn had no effect. When these Mn-treated plants were changed to nutrient solution with no bicarbonate and sufficient Fe, regreening was retarded several days in relation to the other treatments. In plants grown without bicarbonate, the reducing capacity was higher in plants grown with a low amount of Fe than in plants grown with either 0 Fe or sufficient Fe. In plants grown with bicarbonate and low Fe, the leaves became chlorotic and had low Fe concentration. When these plants received higher Fe supply, the regreening of the old leaves was not complete, though they had even higher Fe concentrations that the new developing leaves which were completely green. Results are discussed in relation to the Fe or Zn requirements of plants to induce reducing capacity and the incapacity of the cells from chlorotic leaves to absorb Fe and repair metabolic and structural damages.  相似文献   

5.
There is increasing evidence suggesting that iron (Fe) deficiency induces not only leaf chlorosis and a decline of photosynthesis, but also structural changes in leaf morphology, which might affect the functionality of leaves. In this study, we investigated the effects of Fe deficiency on the water relations of peach ( Prunus persica (L.) Batsch.) leaves and the responses of previously chlorotic leaves to Fe resupply via the root or the leaf. Iron deficiency induced a decline of maximum potential photosystem II (PSII) efficiency (F V/F M), of rates of net photosynthesis and transpiration and of water use efficiency. Iron chlorosis was associated with a reduction of leaf xylem vessel size and of leaf hydraulic conductance. In the course of the day, water potentials in chlorotic leaves remained higher (less negative) than in green leaves. In chlorotic leaves, normal stomatal functioning was disturbed, as evidenced by the lack of opening upon withdrawal of external CO2 and stomatal closure after sudden illumination of previously darkened leaves. We conclude that the Fe deficiency induced limitations of xylem conductivity elicited a water saving strategy, which poses an additional challenge to plant growth on high pH, calcareous soils. Fertilisation with Fe improved photosynthetic performance but the proper xylem structure and water relations of leaves were not fully restored, indicating that Fe must be available at the first stages of leaf growth and development.  相似文献   

6.
Apoplast/cytoplasm partitioning of ascorbic acid (AA) was examined in four genotypes of snap bean ( Phaseolus vulgaris L.) known to differ in ozone sensitivity. Plants were grown in pots under field conditions using open-top chambers to establish charcoal-filtered (CF) air (36 nmol mol−1 ozone) or elevated ozone (77 nmol mol−1 ozone) treatments. AA in fully expanded leaves of 36-day-old plants was separated into apoplast and cytoplasm fractions by vacuum infiltration methods using glucose 6-phosphate as a marker for cytoplasm contamination. Apoplast ascorbate levels ranged from 30 to 150 nmol g−1 fresh weight. Ozone-sensitive genotypes partitioned 1–2% of total AA into the apoplast under CF conditions and up to 7% following a 7-day ozone exposure. In contrast, an ozone-tolerant genotype partitioned 3–4% of total leaf AA into the leaf apoplast in both CF and ozone-treated plants. The results suggest that genetic background and ozone stress are factors that affect AA levels in the extracellular space. For all genotypes, the fraction of AA in the oxidized form was higher in the apoplast compared to the cytoplasm, indicative of a more oxidizing environment within the cell wall.  相似文献   

7.
The roles of phytohormones and fusicoccin in H+ extrusion by isolated protoplasts from rape leaves ( Brassica napus L. cv. Belinda) were investigated and compared to results obtained with leaf segments of the same plants. Net H+ release by protoplasts, which was at least partly due to ATPase activity, was enhanced by 10 μ M indole-3-acetic acid and reduced by 20 μ M abscisic acid, whereas fusicoccin (10 μ M ), brassinosteroid (3 μ M ), kinetin (20 μ M ) and gibberellic acid (10 μ M ) had no effect. Hormone effects and H+ release were not detectable with leaf segments from the same plants. However, using field-grown plants, indole-3-acetic acid and especially fusicoccin stimulated the acidification of the external medium by leaf segments. Hormonecontrolled H+ release by leaf cells is interpreted as the first step in acid-triggered and turgor-regulated cell growth.  相似文献   

8.
In order to investigate effects of limited NO3 availability in corn ( Zea mays L. cv. Brulouis) 17-day-old plants were grown for a further 25 days on sand in a growth chamber. The plants received frequent irrigation with a complete nutrient solution containing 0.2, 0.6, 1.5 or 3.0 mM NO3. With 0.2 mM NO; nitrate levels in both roots and leaves diminished rapidly and were almost zero after 10 days treatment. Concurrently, as signs of nitrogen deficiency appeared, shoot growth was restricted, whereas root growth was enhanced. In addition, the concentration of reduced nitrogen and malate in the leaves declined, and in vitro nitrate reductase activity (NRA. EC 1.6.6.1), soluble protein and chlorophyll levels of leaf tissue were depressed and starch concentration was enhanced. With 0.6 mM NO3 in the nutrient solution, the decrease in NO3 levels in the tissues and the increase in root development were similar to those observed with 0.2 mM NO3. However, shoot growth, reduced nitrogen concentration in leaves, and the above-mentioned biochemical characteristics were almost identical to those obtained at 1.5 and 3.0 mM NO3. This indicates that when supplied with 0.6 mM NO3, corn plants were able to absorb sufficient NO3 to support maximal biomass production without appreciable NO3 accumulation in roots or shoot. It is, thus, suggested that the plants responded to low NO3, availability in medium by enhancing root growth and by maximizing NO3 reduction relative to NO3 accumulation.  相似文献   

9.
The electrical response of Zea mays protoplasts to different auxins and to antibodies raised against an ER-located auxin binding protein from maize (Zm-ERabp1), was investigated using the patch-clamp technique (whole-cell configuration). Following a lag-phase of 30–40 seconds, indole-3-acetic acid and 1-naphthylacetic acid induced an outwardly directed current of positive charge in a concentration-dependent manner. This current was further increased by the fungal toxin fusicoccin (FC). The current was observed only in the presence of Mg2+-ATP in the patch-pipette and was abolished after addition of erythrosin B, an inhibitor of H+-ATPase, to the protoplasts indicating that the plasma membrane H+-ATPase is activated by auxins and fusicoccin. Addition of antibodies directed against Zm-ERabp1 abolished the current induced by auxins, without affecting the response of protoplasts to fusicoccin. Antibodies directed against a peptide representing part of the putative auxin binding domain of Zm-ERabp1 showed auxin agonist activity, stimulating an outwardly directed membrane current in the absence of auxin. These results suggest that (i) Zm-ERabp1 or antigenically related proteins represent a site for auxin perception through which the plasma membrane H+-ATPase is activated, and (ii) that the activation of the H+-ATPase by such proteins is initiated from outside the plasma membrane.  相似文献   

10.
Fertilization of bean plants grown in perlite with 1 and 3 mM CaCl2 or Ca(NO3)2 reduced severity of grey mould as compared with control plants or plants fertilized with 5 mM of the compounds. Fertilization with Ca(NO3)2 reduced severity leaf grey mould and fruit ghost spots of tomato plants grown in perlite by 70 and 45%, respectively. The rate of decrease varied with the position of the fruits on the plants. Leaves from plants treated with calcium or otherwise [KNO3, (NH4)2SO4] produced less ethylene than leaves of nontreated plants. Rate of growth of B. cinerea was lower on growth medium prepared from washings from leaves of calcium fertilized plants than from leaves from other treatments. The fertilizer combination Ca(H2PO4)2+ CaSO4 (1 and 3 g/kg soil) applied once to tomato plants grown in soil reduced severity of leaf grey mould by 80 % (significant at P = 0.05) but 1–3 g CaSO4/kg soil only tended to reduce disease severity (30–40 %, not significant) as compared with the control. The compounds CaCl2 and Ca(NO3)2 increased significantly ( P = 0.05) the growth of B. cinerea on synthetic medium when applied at rates of 1 0–10.0 mM whereas reduction of growth was observed with 0.1 mM of the compounds and of CaSO4.  相似文献   

11.
Experiments were performed with developing and mature leaves of Urtica dioica L. to trace differences which could be interpreted in terms of cell wall-bound acid invertase (EC 3.2.1.26) participating in phloem unloading in a sink leaf. The pH of apoplastic fluid that was collected by gentle centrifugation of entire leaves was identical (7.1) in the two types of leaves; also, fluorometric determination with esculetin showed a neutral apoplastic pH between 7.0 in the source and 7.2 in the sink leaf. To detect whether differences in apoplastic pH occur within limited leaf areas, such as of the tissue surrounding the veins, the metabolic fate of [14C]–(fructosyl)-sucrose that was administered via the xylem was investigated. In source leaves, there was a large transitory decrease in [14C]-sucrose followed by a substantial resynthesis of this compound. In sink leaves, resynthesis was less significant and carbon was incorporated mainly in starch, charged soluble compounds and cell walls. However, after correction for resynthesis, the two types of leaves showed an identical capacity for sucrose cleavage. Finally, activation of the apoplastic invertase by administering labelled sucrose in buffered solution of pH 5.0 did not result in an enhanced degradation. By contrast, apoplastic fluid collected from leaves which had been infiltrated with buffer solutions of pH 5.5 and 8.0, respectively, showed a rapid adjustment of the pH close to the natural neutral value by the mesophyll tissue. The results are incompatible with the idea of an active invertase in the sink (and the source) leaves apoplast, and hence do not lend support to the theory of apoplastic cleavage of sucrose being required for phloem unloading in this kind of a utilization sink.  相似文献   

12.
Abstract: The putative role of glutamine, exported from leaves to roots, as a negative feedback signal for nitrate uptake was investigated in Zea mays L. seedlings. Glutamine (Gln) was supplied by immersion of the tip-cut leaves in a concentrated solution. Nitrate (NO3) uptake was measured by its depletion in amino acid-free medium. The treatment with Gln resulted in a strong inhibition of nitrate uptake rate, accompanied by a significant enrichment of amino compounds in root tissue. The effect of N-availability on NO3 uptake was determined in split-root cultures. The plants were subjected to complete or localized N supply. Inducible NO3 uptake systems were also induced in N-deprived roots when the opposite side of the root system was supplied with KNO3. The inhibitory effect of Gln was unaffected by localized N supply on one side of the split-root. The potential role of Gln in the shoot-to-root control of NO3 uptake is discussed.  相似文献   

13.
Abstract. An investigation has been made of methods for isolating membrane vesicles from corn ( Zea mays L.) roots active in calcium transport and K+-stimulated ATPase. Pretreating and grinding the roots at room temperature with EGTA and fusicoccin increases basal ATPase activity. Improvement in Ca2+ uptake requires isolation of a scaled vesicle fraction by the method of Sze(1980). Sorbitol is superior to sucrose as an osmoticant. The pH optimum for Ca2+ uptake is 7.5. whereas that for associated ATPase activity is 6.5. Calmodulin strongly stimulates Ca2+ uptake in a process little affected by uncouplers and ATPase inhibitors, but blocked by chlorpromazine. Fusicoccin gives less stimulation of Ca2+ uptake which is sensitive to uncouplers, and is dependent upon isolation with fusicoccin present. It appears that the sealed vesicle fraction may possess two Ca2+ transport systems: a calmodulin-activated Ca2+-transporting ATPase, and a Ca2+/H+ antiport coupled through the protonmotive force to a fusicoccin-stimulated H+-ATPase.  相似文献   

14.
Ascorbic acid (AA) in the leaf apoplast has the potential to limit ozone injury by participating in reactions that detoxify ozone and reactive oxygen intermediates and thus prevent plasma membrane damage. Genotypes of snap bean ( Phaseolus vulgaris L) were compared in controlled environments and in open-top field chambers to assess the relationship between extracellular AA content and ozone tolerance. Vacuum infiltration methods were employed to separate leaf AA into extracellular and intracellular fractions. For plants grown in controlled environments at low ozone concentration (4 nmol mol−1 ozone), leaf apoplast AA was significantly higher in tolerant genotypes (300–400 nmol g−1 FW) compared with sensitive genotypes (approximately 50 nmol g−1 FW), evidence that ozone tolerance is associated with elevated extracellular AA. For the open top chamber study, plants were grown in pots under charcoal-filtered air (CF) conditions and then either maintained under CF conditions (29 nmol mol−1 ozone) or exposed to elevated ozone (67 nmol mol−1 ozone). Following an 8-day treatment period, leaf apoplast AA was in the range of 100–190 nmol g−1 FW for all genotypes, but no relationship was observed between apoplast AA content and ozone tolerance. The contrasting results in the two studies demonstrated a potential limitation in the interpretation of extracellular AA data. Apoplast AA levels presumably reflect the steady-state condition between supply from the cytoplasm and utilization within the cell wall. The capacity to detoxify ozone in the extracellular space may be underestimated under elevated ozone conditions where the dynamics of AA supply and utilization are not adequately represented by a steady-state measurement.  相似文献   

15.
Abstract. Xylem sap was collected from individual leaves of intact transpiring lupin plants exposed to increasing concentrations of NaCl by applying pneumatic pressure to the roots. Concentrations of Na+ and Cl in the xylem sap increased linearly with increases in the external NaCl concentration, averaging about 10% of the external concentration. Concentrations of K+ and NO3, the other major inorganic ions in the sap, were constant at about 2.5 and 1.5 mol m−3, respectively. There was no preferential direction of Na + or Cl to either young or old leaves: leaves of all ages received xylem sap having similar concentrations of Na+ and Cl, and transpiration rates (per unit leaf area) were also similar for all leaves. Plants exposed to 120–160 mol m−3 NaCl rapidly developed injury of oldest leaves; when this occurred, the Na+ concentration in the leaflet midrib sap had increased to about 40 mol m−3 and the total solute concentration to 130 osmol m−3. This suggests that uptake of salts from the transpiration stream had fallen behind the rate of delivery to the leaf and that salts were building up in the apoplast.  相似文献   

16.
Abstract

A Cytological study of peach leaves, chlorotic or regreening after treatment with salt solutions. — Whitening and regreening (for treatment with solutions containing Fe) leaves of chlorotic (Fe deficient) peaches were examined both at the optical and the electron microscope. The nuclei, as seen at the optical microscope, and the plastids infrastructures of chlorotic leaves sharply differ from the same structure of the leaves of virused plants. The differentiation of plastids of peach chlorotic leaves is arrested at a very early stage comparable to that of proplastids in etiolated plants before a vescicolar body is formed. In peach plastids a prolamellar body is never formed, not even during the greening of plastids. This is a further confirmation that such a structure, although normal in etiolated and genetically variegated plants, does not represent a fixed stage during differentiation of the lamellar system.

The present observations put into evidence that, even when the formation of lamellae is not immediate, the formation of the prolamellar body is not a necessary condition for the further development of the lamellar apparatus.  相似文献   

17.
When maize plants ( Zea mays L. line ps-lye) were subjected to chilling (at 8 ± 2°C, 80% relative humidity for 24 h under illumination by 80 W m2 between 400–700 nm), the leaves were wilted and photosynthetic membranes were permanently damaged. This was shown by the swelling of grana thylakoids and a deerease in the charging capacity of the electron transport chain. Water loss and photosynthetic dysfunction were connected in the process of a chilling-induced increase of stomatal aperture. Chilling injury could be eased to a considerable extent by a mild treatment with DCMU preventing stomatal opening, wilting, and the irreversible loss of CO2 fixation capacity.  相似文献   

18.
Passive influx of 45Ca2+ into non-growing corn root tissue ( Zea mays L.) was increased as a result of actions (cutting, rubbing, chilling, heating, acidifying) or agents (cyanide, uncouplers) known to depolarize the cell membrane, and was decreased by actions (washing) or agents (fusicoccin) known to hyperpolarize it. These responses indicate the presence of Ca2+ channels which are voltage controlled. If the injuries were extensive, however, voltage control was lost and hyperpolarization with fusicoccin was expressed by increased 45Ca2+ influx. Control could be regained by tissue washing, and millimolar levels of external Ca2+ would protect against loss of control. Influx of Ca2+ was strongly inhibited by La3+, but only weakly by verapamil. Intact roots showed greater cold shock sensitivity in maturing cells than in growing cells. We conclude that corn roots normally restrict Ca2+ influx by a mechanism linked to hyper-polarization of the plasmalemma.
Calcium ions which enter cold-shocked tissue are partially extruded during the early phase of recovery by a process stimulated by fusicoccin and subject to uncoupling.  相似文献   

19.
Roots and leaves of Zea mays L. cv. Ganga Safed-2 seedlings grown with nutrient solution containing either 10 m M KNO3 or NH4Cl or 5 m M NH4NO3 had considerably higher glutamate synthase (NADH, EC 1.4.1.14) activity than the corresponding organs from seedlings grown without any nitrogen. The supply of inorganic nitrogen for a short time, i.e. 3 h, to roots and leaves excised from seedlings grown without nitrogen also increased the enzyme activity in these organs. This increase was more pronounced with nitrate than with ammonium nitrogen. When excised roots and leaves from NH4NO3-grown seedlings were incubated in a minus nitrogen medium for 24 h, the enzyme activity declined considerably. This decline was inhibited to some extent by nitrogen, especially by nitrate. Inorganic nitrogen prevented similarly the decline in in vitro enzyme activity during 24 h storage at 25°C, more regularly for the root than for the leaf enzyme. The experiments demonstrate the role of inorganic nitrogen in the regulation of glutamate synthase activity.  相似文献   

20.
A method was elaborated by which the pH in leaf apoplast can be measured. The technique is based on the pH dependent fluorescence of 5-carboxyfluorescein (5-CF) or fluorescein isothiocyanate (FITC). The fluorescein isothiocyanate is coupled with a macromolecular dextran molecule (FITC-dextran). For eliminating the effect of the absolute dye concentration the dual excitation technique was applied. It was shown that the ratio of fluorescence excited by light of 491 nm and 463 nm was virtually independent of the concentration of 5-CF and that this fluorescence ratio was related to the pH. The plasmalemma is practically impermeable to FITC-dextran and in the test we carried out over a period of 6 h not the slightest indication was found that it may penetrate the plasma membrane. For 5-CF this cannot be ruled out completely. It is possible that at pH values below 4.5 it may penetrate biological membranes at low rates.
Experiments with leaves of sunflower ( Helianthus animus cv. Erika) perfused with 5-carboxyfluorescein and supplied with different nitrogen forms showed that NH+4 application resulted in a decrease and NO+3 application in an increase of the leaf apoplast pH. Leaf spraying with fasicoccin was followed by a pH decrease, while leaf spraying with the protonophores p -trifluoromethoxy carbonytcyanide phenylhydra-zon (FCCP) or nigericin resulted in neutral apoplastic pH. These results provide evidence that the method is well suited for measuring the response of the leaf apoplast pH to changing physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号