首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of high mannose oligosaccharides with the size range Man8-14GlcNAc was purified from Saccharomyces cerevisiae invertase, and the composition of each was determined by chemical analysis. Purity and composition were verified by 1H NMR spectroscopy at 500 MHz, and structures were assigned on the basis of chemical shifts in C1-H and C2-H protons of similarly substituted compounds of known structure. Such analyses showed that these invertase oligosaccharides were a homologous series of homogeneous compounds, each related to the next member by addition of 1 mol of mannose in a specific alpha-linked configuration. Man8GlcNAc purified from the total glycoprotein fraction of disrupted yeast was the smallest species found and had the same homogeneous structure as that previously reported for the Man8GlcNAc from invertase (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666). Digestion of Man8-13GlcNAc species from invertase with Aspergillus satoi alpha 1,2-mannosidase provided products that were consistent with the structures assigned by 1H NMR as did fast atom bombardment-mass spectroscopy fragmentation analysis of the Man9,10GlcNAc oligosaccharides. These results lead to the proposal that Man8GlcNAc is the only trimming intermediate in Saccharomyces sp., and the remaining Man9-14GlcNAc oligosaccharides are biosynthetic intermediates which define the principal pathway of single-step mannose addition in the formation of the inner core of yeast mannan.  相似文献   

2.
Previously, Man8-14GlcNAc oligosaccharides were isolated from highly purified Saccharomyces cerevisiae invertase and shown by one-dimensional 1H NMR spectroscopy and alpha 1,2-linkage-specific mannosidase digestion to constitute a homologous series of nearly homogeneous compounds, which appeared to define the intermediates in oligosaccharide core synthesis in yeast (Trimble, R.B. and Atkinson, P.H. (1986) J. Biol. Chem., 261, 9815-9824). To evaluate whether invertase oligosaccharides reflected global core processing of yeast glycans, the soluble glycoprotein pool of disrupted log-phase cells was digested with endo-beta-N-acetyl-glucosaminidase H and Man8-13GlcNAc were isolated by Bio-Gel P-4 chromatography. Although analysis of each size class by one-dimensional 400 MHz and two-dimensional 500 MHz phase-sensitive COSY 1H NMR spectroscopy revealed considerable structural heterogeneity in all but Man8GlcNAc, the major positional isomer in Man9-13GlcNAc (approximately 50%) was identical to that previously elucidated on invertase. The heterogeneity resided in four families of oligosaccharides: (i) Glc3Man9GlcNAc----Man8 GlcNAc trimming intermediates; (ii) alpha-mannosidase degradation products of the principal isomers; (iii) mannan elongation intermediates; (iv) core structures with the alpha 1,2-linked mannose usually removed by the processing alpha-mannosidase. The potential for the vacuolar alpha-mannosidase (AMS1 gene product) to generate heterogeneity in vitro was confirmed by isolating oligosaccharides from AMS1 and ams1 yeast strains in the presence of a Man13GlcNAc[3H]-ol marker (where GlcNAc[3H]-ol is N-acetylglucosamin [1-3H]itol). Degradation of the Man13GlcNAc[3H]-ol to Man9-12GlcNAc[3H]-ol occurred in the former, but not in the latter. A role for the vacuolar alpha-mannosidase in generating at least some heterogeneity in vivo was inferred from the 1H NMR spectrum of the AMS1 Man11GlcNAc pool, which showed more structural isomerism than seen in the spectrum of a comparable ams1 Man11GlcNAc preparation. Thus, the principal biosynthetic pathway of inner core mannan in Saccharomyces is defined by the Man8-13GlcNAc oligosaccharides found on external invertase, while structural heterogeneity in these size classes results from precursor processing in the endoplasmic reticulum, core extension in the Golgi and metabolic degradation in the vacuole.  相似文献   

3.
Cleavage of yeast invertase by alpha-chymotrypsin produced a number of small glycopeptides that were highly active as elicitors of ethylene biosynthesis and phenylalanine ammonia-lyase in suspension-cultured tomato cells. Five of these elicitors were purified and their amino acid sequence determined. They all had sequences corresponding to known sequences of yeast invertase, and all contained an asparagine known to carry a N-linked small high mannose glycan. The most active glycopeptide elicitor induced ethylene biosynthesis and phenylalanine ammonia-lyase half-maximally at a concentration of 5-10 nM. Structure-activity relationships of the peptide part were analyzed by further cleavage of a defined glycopeptide elicitor with various proteolytic enzymes. Removal of the C-terminal phenylalanine enhanced the elicitor activity, whereas removal of N-terminal arginine impaired it. A glycopeptide with the peptide part trimmed to the dipeptide arginine-asparagine was still fully active as elicitor. Glycopeptides with identical amino acid sequences were further separated into fractions differing in the oligosaccharide side chain. A given peptide had high elicitor activity when carrying a glycan with 10-12 mannosyl residues (Man10-12GlcNAc2), a 3-fold lower activity when carrying Man9GlcNAc2 and a 100-fold lower activity when carrying Man8GlcNAc2. The oligosaccharides, released by endo-beta-N-acetylglucosaminidase H from the pure glycopeptide elicitors, acted as suppressors of elicitor-induced ethylene biosynthesis and phenylalanine ammonia-lyase activity. A series of such oligosaccharides in the size range of Man8-13GlcNAc was purified. The structure and composition of the purified oligosaccharides corresponded to the known small high mannose glycans of yeast invertase as verified by 1H NMR spectroscopy at 600 MHz. The highest suppressor activities were obtained with the oligosaccharides containing 10-12 mannosyl residues (Man10-12GlcNAc). The oligosaccharide Man8 GlcNAc was ineffective as a suppressor. Thus, the structural requirements for the free oligosaccharides to act as efficient suppressors were the same as for the oligosaccharide side chains of the glycopeptides for high elicitor activity. We propose that the glycan suppressors bind to the same recognition site as the glycopeptide elicitors without inducing a response.  相似文献   

4.
Using enzyme-linked immunosorbent assays and radioimmunoassays employing chondroitinase ABC-treated rabbit cartilage proteoglycan, we have shown that approximately one-third of the outbred New Zealand white rabbits we have examined possess naturally occurring antibodies which react with oligosaccharides of hyaluronic acid (independently of chain length) bearing saturated and 4,5-unsaturated glucuronosyl residues at the nonreducing ends. Such antibodies were also found in a similar proportion of rabbits with an experimental inflammatory arthritis. There was a preferential reactions in the majority of sera with unsaturated oligosaccharides of hyaluronic acid. One serum (R64) reacted only with unsaturated oligosaccharides of hyaluronic acid. Sera reacted also with unsaturated (never saturated) oligosaccharides of chondroitin 4-sulfate and with chondroitin 6-sulfate, particularly when chondroitin sulfate oligosaccharides remained bound to a proteoglycan core protein. Reactions were also observed to both unsaturated and saturated oligosaccharides of chondroitin. Some of these sera also reacted with intact hyaluronic acid and chondroitin but never with intact chondroitin sulfate. The antibodies were present in the IgG fraction of four sera studied and in the IgM fraction of one of these sera: they bound through the F(ab')2 region of the molecule. These observations suggest that, in some rabbits, humoral immunity to hyaluronic acid and/or chondroitin sulfate bound to core protein can develop after these reactive glycosaminoglycans have been degraded by eliminases or hydrolases produced by naturally occurring bacteria and rabbit cells, respectively. Immunological studies of proteoglycans and hyaluronic acid treated with eliminases and hydrolases employing rabbit antisera, and possibly those from other species, should be evaluated in the light of these observations.  相似文献   

5.
6.
Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1,6-Man backbone for elongation with additional alpha 1,6-linked mannose residues, according to the following scheme: (formula, see text).  相似文献   

7.
Immunoelectron microscopy of Saccharomyces cerevisiae cells embedded in Lowicryl K4M has been used to localize invertase and plasma membrane (PM) ATPase in secretory organelles. sec mutant cells incubated at 37 degrees C were prepared for electron microscopy, and thin sections were incubated with polyclonal antibodies, followed by decoration with protein A-gold. Specific labeling of invertase was seen in the lumen of the endoplasmic reticulum, Golgi apparatus, and secretory vesicles in mutant cells that exaggerate these organelles. PM ATPase accumulated within the same organelles. Double-immune labeling revealed that invertase and PM ATPase colocalized in secretory vesicles. These results strengthen the view that secretion and plasma membrane assembly are biosynthetically coupled in yeast.  相似文献   

8.
Invertase covalent grafting onto corn stover   总被引:1,自引:0,他引:1  
The covalent coupling of an invertase from baker's yeast onto an agricultural by-product, corn grits, has been developed. The optimal conditions for each step of the chemical modification of the support have been determined: oxidation with sodium metaperiodate, amination with ethylenediamine, reduction with sodium cyanoborohydride, and activation with glutaraldehyde. Activities up to 7.2 x 10(4) mumol reducing sugars produced/min g support could thus be achieved. Invertase coupling onto corn grits yields a derivative with a 25 times higher activity than when coupling this enzyme onto porous silica. The operational stability of invertase immobilized onto corn stover was found to be very high, with a half-life of up to 365 days at 40 degrees C when using a 2M sucrose solution as substrate. This immobilization method could be easily scaled up to the preparation of 10 kg of invertase derivative.  相似文献   

9.
Zuther E  Kwart M  Willmitzer L  Heyer AG 《Planta》2004,218(5):759-766
Companion cell-specific expression of a cytosolic invertase from yeast (Saccharomyces cerevisiae) was used as a tool to synthesise oligosaccharides in the sieve element/companion cell complex and study whether oligosaccharides could be transported in the phloem of an apoplastically loading species. Potato (Solanum tuberosum L.) plants expressing the invertase under the control of the Agrobacterium tumefaciens rolC promoter produced the trisaccharide 6-kestose in leaves, which was transported via the phloem and accumulated in tubers of transgenic plants. In graft experiments with rolC invertase plants as scion and wild-type rootstocks, 6-kestose accumulated in tubers to levels comparable to sucrose. This shows that long-distance transport of oligosaccharides is possible in apoplastically loading plants, which normally transport only sucrose. The additional transport route for assimilates neither led to elevated photosynthetic activity nor to increased tuber yield. Enhanced sucrose turnover in companion cells caused large amounts of glucose and fructose to be exuded from leaf petioles, and elevated levels of sucrose were detected in phloem exudates. While the latter indicates a higher capacity for sucrose loading into the phloem due to increased metabolic activity of companion cells, the massive release of hexoses catalysed by the invertase seemed to interfere with assimilate delivery to sink organs.Abbreviations HPAEC High-performance liquid anion-exchange chromatography - SE–CCC Sieve element/companion cell complex - WT Wild type  相似文献   

10.
Structure of Saccharomyces cerevisiae alg3, sec18 mutant oligosaccharides   总被引:3,自引:0,他引:3  
Asparagine-linked oligosaccharides are synthesized by transfer of Glc3Man9GlcNAc2 from dolichol pyrophosphate to nascent polypeptides. Assembly of the precursor proceeds by highly ordered sequential addition of mannose and glucose to form Glc3Man9GlcNAc2-P-P-dolichol. Yeast mutants in asparagine-linked glycosylation (alg), generated by an 3H-Man suicide technique, were assigned to eight complementation groups which define steps in oligosaccharide-lipid synthesis (Huffaker, T.C., and Robbins, P.W. (1982) J. Biol. Chem. 257, 3203-3210). Alg3 invertase oligosaccharides are resistant to endo-beta-N-acetylglucosaminidase H, and the lipid-oligosaccharide pool yields Man5Glc-NAc2, suggesting its structure may be that from mammalian cells lacking Man-P-dolichol (Chapman, A., et al. (1980) J. Biol. Chem. 255, 4441-4446). To test this supposition, the endoplasmic reticulum form of invertase derepressed in alg3,sec18 yeast at 37 degrees C was isolated as a source of oligosaccharides whose processing beyond glucose and/or mannose trimming, if involved, would be prevented. Man8GlcNAc2 and Man5GlcNAc2 were released by peptide-N-glycosidase F from alg3,sec18 invertase in a 1:5 molar ratio. 1H NMR spectroscopy revealed Man8GlcNAc2 to be the alpha 1,2-mannosidase-trimming product described earlier (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666), while Man5GlcNAc2 was Man alpha 1, 2Man alpha 1,2Man alpha 1,3(Man alpha 1,6)Man beta 1,4GlcNAc beta 1, 4GlcNAc. This provides a structural proof for the lipid-linked Man5GlcNAc2 originally proposed from enzymatic and chemical analyses of the radiolabeled mammalian precursor. Experimental evidence indicates that, unlike the mammalian cell mutants which are unable to synthesize Man-P-dolichol, alg3 yeast accumulate Man5GlcNAc2-P-P-dolichol due to a defective alpha 1,3-mannosyltransferase required for the next step in oligosaccharide-lipid elongation.  相似文献   

11.
1. Some 16 amino acids (not containing SH or S-S groups) did not affect the reactivation of yeast invertase inactivated by acid. 2. Cysteine, reduced glutathione, homocysteine, thiophenol, and thioglycollic acid accelerated the reactivation of yeast invertase. 3. Cystine, oxidized glutathione, and homocystine inhibited the reactivation of yeast invertase. 4. The compounds mentioned in 2 and 3 did not affect native invertase. 5. The use of compounds in which the H of the SH group of homocysteine was substituted by a methyl or benzyl nullified the accelerative effect. 6. The longer the cysteine remained in contact with the inactivating enzyme, the greater was the velocity of the reactivated invertase. 7. The per cent acceleration by cysteine is inversely proportional to the control rate.  相似文献   

12.
A V Reddy  R MacColl  F Maley 《Biochemistry》1990,29(10):2482-2487
External invertase exists in an oligomeric equilibrium of dimer, tetramer, hexamer, and octamer, the concentrations of which vary with pH, time, and concentration of enzyme [Chu, F.K., Watorek, W., & Maley, F. (1983) Arch. Biochem. Biophys. 223, 543-555; Tammi, M., Ballou, L., Taylor, A., & Ballou, C.E. (1987) J. Biol. Chem. 262, 4395-4401]. To assess the influence of carbohydrate on this equilibrium, we investigated the self-association of external invertase (10 oligosaccharides per subunit), deglycosylated external invertase (2 oligosaccharides per subunit), and internal invertase (no carbohydrate) under various conditions. In addition, the effect of carbohydrate on the interaction of the subunits of these various invertases to form heterooligomers was studied. Chloride ion was found to promote subunit association in the various invertases irrespective of their glycosylation status. However, external invertase was less responsive to chloride ion relative to the internal and deglycosylated invertases. The higher oligomers of deglycosylated invertase were stable at 47 degrees C whereas those of external invertase dissociated rapidly into dimers, suggesting that the additional oligosaccharides in external invertase destabilize subunit interaction. Hybridization experiments with the various invertases showed that the dimers of internal invertase formed heterooligomers with either external or deglycosylated invertase. By contrast, the monomers of external and internal invertases formed their respective homodimers, but not heterodimers. These results suggest that the oligosaccharide content of invertase not only influences the extent of self-association but also affects heterooligomer formation.  相似文献   

13.
The specificities and the sizes and shapes of the antibody combining sites of the 15 antisera raised against various stearyl-isomaltosyl oligosaccharides were studied by quantitative precipitin and precipitin inhibition. The antibodies precipitated well with dextrans B512 and B1424 but less well with B1299S and B1355S. Only 3 of the 15 antisera reacted with linear dextrans; however, with about 50% of the added antibodies being precipitated, showing that most of the antibodies cannot bind to internal determinants along the dextran molecules and are similar to myeloma protein W3129 in having cavity-type sites which bind only to terminal nonreducing ends of α1 → 6 dextran. Antibodies differing in the sizes of their antibody combining sites were elicited in different rabbits by the same antigen. Of the 15 antisera studied, four have antibody combining sites as large as IM3, five as large as IM4, three as large as IM5 and three as large as IM6. The association constants for various isomaltose oligosaccharides of an antiserum (R-862) showing fewest bands in isoelectric focusing gel were determined by affinity electrophoresis and were comparable to W3129.  相似文献   

14.
1. A method is given whereby the course of hydrolysis of sucrose by live yeast cells may be followed with precision equal to that found when invertase solutions prepared from autolyzed yeast are used to cause inversion. 2. The practical value of the equation of Nelson and Hitchcock as a means of following the course of enzymic hydrolysis of sucrose is hereby extended. 3. The inversion of sucrose by live yeast cells and by extracted invertase has been quantitatively compared. 4. The course of hydrolysis of sucrose by the invertase of Fleischmann''s yeast has been found to be identical in vivo and in vitro.  相似文献   

15.
Endo-beta-N-acetylglucosaminidase from Arthrobacter protophormiae was tested for its capacity to release N-linked sugar chains from native yeast invertase. The enzyme liberated about 80% of the sugar chains from the native invertase. Deglycosylated invertase was digested by chymotrypsin or pepsin, and twelve N-acetylglucosamine-containing glycopeptides were isolated. The amino acid sequences of these glycopeptides were analyzed by a protein sequencer, and the elution position of 4-L-aspartylglycosylamine was directly identified by conventional sequencing. The endo-beta-N-acetylglucosaminidase was found to remove mainly nine sugar chains from native invertase.  相似文献   

16.
Neutral and phosphorylated N-linked oligosaccharides were isolated from Saccharomyces cerevisiae mnn9 and mnn9 gls1 mutant mannoproteins and separated into homologues that differed in the number of terminal alpha 1----3-linked mannoses. In each type of oligosaccharide, the addition of such mannose was shown to occur in an ordered rather than a random fashion. The results confirm and extend an earlier report that dealt with the N-linked oligosaccharides from yeast invertase [Trimble, R.B., & Atkinson, P.H. (1986) J. Biol. Chem. 261, 9815-9824], and they suggest that the postulated processing pathway can be generalized to include phosphorylated and glucose-containing N-linked oligomannosides. We conclude that this processing pathway is identical for the analogous oligosaccharides from the mnn9 and wild-type strains of S. cerevisiae. Analysis of the mnn2 mnn10 mannoprotein revealed that a similar modification occurred at the branched terminus of the outer chain as well as in the core in this mutant.  相似文献   

17.
Invertase, extracted from broken cells of Saccharomyces cerevisiae X-2180 mm2 mannan mutant, was separated into a fraction insoluble in 75% ammonium sulfate (P75 invertase, 36% carbohydrate) and a soluble fraction (S75 invertase, 53% carbohydrate). The latter reacted with antibodies specific for the alpha 1 leads to 6-linked mannose of the mannoprotein outer chain, whereas the P75 invertase failed to react with this antiserum although it did react with serum against terminal alpha 1 leads to 3-linked mannose units that are characteristic of the mannoprotein core. A bacterial endo alpha 1 leads to 6-mannanase removed the outer chains from the S75 invertase and converted it to a form that was similar in electrophoretic and immunochemical properties to the P75 invertase, whereas the endomannanase had little effect on the latter invertase. The results suggest that the P75 invertase is a form of the enzyme to which only the core oligosaccharide units had been added, and the S75 invertase represents an enzyme fraction to which the polysaccharide outer chains were also attached. A strong anomeric PMR signal for unsubstituted alpha 1 leads to 6-linked mannose in the S75 invertase, and a much reduced signal in the P75 invertase and endomannanase-digested S75 invertase, support these conclusions. Endo-N-acetyl-beta-glucosaminidase digestion of the S75 and P75 invertases, as well as of a purified wild type yeast invertase, produced an apparently identical series of 3 to 4 carbohydrate-containing proteins that were separable by polyacrylamide gel electrophoresis in sodium dodecyl sulfate but that migrated as a single band on isoelectric focusing. The bands ranged from about 63,000 to 69,000 daltons and differed by the size of one or more carbohydrate core units each of 15 mannoses and 1 N-acetylglucosamine. The results suggest that the external invertase molecules contain some core units without attached outer chains, and that the cells contain a precursor form of the enzyme to which only the core units have been added. In support of this conclusion, PMR spectra and chromatographic patterns show that the core fragments from the P75, S75, and wild type invertases are essentially identical.  相似文献   

18.
Three different classes of signals for plant vacuolar targeting have been defined. Previous work has demonstrated that the carboxyl-terminal propeptide (CTPP) of barley lectin (BL) is a vacuolar targeting signal in tobacco plants. When a mutant BL protein lacking the CTPP is expressed in tobacco, the protein is secreted. In an effort to determine the universality of this signal, the CTPP was tested for its ability to target proteins to the vacuole of Saccharomyces cerevisiae. Genes encoding fusion proteins between the yeast secreted protein invertase and BL domains were synthesized and transformed into an invertase deletion mutant of yeast. Invertase assays on intact and detergent-solubilized cells demonstrated that invertase+CTPP was secreted, while nearly 90% of the invertase::BL+CTPP (fusion protein between invertase and BL containing the CTPP) and invertase::BL-CTPP proteins (fusion between invertase and BL lacking the CTPP) were retained intracellularly. These fusions were secreted in a mutant of yeast that normally secretes proteins targeted to the vacuole. With this and previous work, proteins representing all three classes of plant vacuolar targeting signals have now been tested in yeast, and in all cases, the experiments indicate that the plant proteins are directed to the yeast vacuole using signals other than those recognized by plants.  相似文献   

19.
We have screened a Hydra cDNA library for sequences encoding N-terminal signal peptides using the yeast invertase secretion vector pSUC [Jacobs et al., 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289-296]. We isolated and sequenced 907 positive clones; 88% encoded signal peptides; 12% lacked signal peptides. By searching the Hydra EST database we identified full-length sequences for the selected clones. These encoded 37 known proteins with signal peptides and 40 novel Hydra-specific proteins with signal peptides. Localization of two signal peptide-containing sequences, VEGF and ferritin, to the secretory pathway was confirmed with GFP fusion proteins. In addition, we isolated 105 clones which lacked signal peptides but which supported invertase secretion from yeast. Isolation of plasmids from these clones and retransformation in invertase-negative yeast cells confirmed the phenotype. A GFP fusion protein of one such clone encoding the foot morphogen pedibin was localized to the cytoplasm in transfected Hydra cells and did not enter the ER/Golgi secretory pathway. Secretion of pedibin and other proteins lacking signal peptides appears to occur by a non-classical protein secretion route.  相似文献   

20.
We have purified a fructosyltransferase from conidia of the inulin-producing fungus Aspergillus sydowi IAM 2544 and obtained peptide sequences from proteolytic fragments of the protein. With degenerated primers, we amplified a PCR fragment that was used to screen a cDNA library. The fructosyltransferase gene from Aspergillus sydowi (EMBL accession no. AJ289046) is expressed in conidia, while no expression could be detected in mycelia by Northern blot analysis of mycelial RNA. The gene encodes a protein with a calculated molecular mass of 75 kDa that is different from all fructosyltransferases in the databases. The only homology that could be detected was to the invertase of Aspergillus niger (EMBL accession no. L06844). The gene was functionally expressed in Escherichia coli, yeast, and potato plants. With protein extracts from transgenic bacteria and yeast, fructooligosaccharides could be produced in vitro. In transgenic potato plants, inulin molecules of up to 40 hexose units were synthesized in vivo. While in vitro experiments with protein extracts from conidia of Aspergillus sydowi yielded the same pattern of oligosaccharides as extracts from transformed bacteria and yeast, in vivo inulin synthesis with fungal conidia leads to the production of a high-molecular-weight polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号