共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a variety of certain inhibitors of adrenal steroidogenesis have been studied on the reconstituted C21-steroid 17 alpha-hydroxylase-17,20-lyase system, whose protein components, the enzyme 17 alpha-hydroxylase-17,20-lyase(P-450sccII) and its reductase, are extensively purified from pig testis microsomes. We found: (1) Ketoconazole (cis-1-acetyl-4-[4-((2-(2,4-dichlorophenyl)-2-(1H-imidazole-1- ylmethyl-1,3-dioxalan-4-ol)methoxy)phenyl] piperazine and Etomidate(R-(+)-ethyl-[1-(a-methyl-benzyl)-indol-5-carboxylatel), inhibited cleavage of 17 alpha-hydroxy progesterone at the 17,20-bond to give androstenedione in a dose-dependent fashion. (2) Some other inhibitors of steroidogenesis, Metyrapone (2-methyl-1.2di-3-pyridyl-1-propanone), Trilostane (4,5-epoxy-17-hydroxy-3-oxo androstane-2-carbonitrile),o,p'DDD (1-(O-chlorophenyl)-1-(p-chlorophenyl)2,2-dichloroethane) and Aminoglutethimide (p-(alpha-aminopheny)-alpha-ethylglutaramide) did not inhibit the same 17,20-lyase system. (3) All of the above listed inhibitors, over a wide variety of concentration ranges, had no significant effect on the 17 alpha-hydroxylation of 11 beta-hydroxyprogesterone, which had been shown to be catalyzed by the same P-450sccII. (4) NADPH:P-450 reductase was not inhibited by all of the above listed inhibitors. 相似文献
2.
Inhibitory effects of Cu(2+) on the cytochrome P450 (P450)-catalyzed reactions of liver microsomes and reconstituted systems containing purified P450 and NADPH-P450 reductase (NPR) were seen. However, Zn(2+), Mg(2+), Mn(2+), Ca(2+), and Co(2+) had no apparent effects on the activities of microsomal P450s. Cu(2+) inhibited the reactions catalyzed by purified P450s 1A2 and 3A4 with IC(50) values of 5.7 and 8.4 microM, respectively. Cu(2+) also inhibited reduction of cytochrome c by NPR (IC(50) value of 5.8 microM). Copper caused a decrease in semiquinone levels of NPR, although it did not disturb the rate of formation of semiquinone. P450 reactions supported by an oxygen surrogate, tert-butyl hydroperoxide, instead of NPR and NADPH, were inhibited by the presence of Cu(2+). The results indicate that Cu(2+) inhibits the P450-catalyzed reactions by affecting both P450s and NPR. It was also found that the inhibition of catalytic activities of P450s by Cu(2+) involves overall conformational changes of P450s and NPR, investigated by CD and intrinsic fluorescence spectroscopy. These results suggest that the inhibitory effect of Cu(2+) on the P450-catalyzed reactions may come from the inability of an efficient electron transfer from NPR to P450 and also the dysfunctional conformation of NPR and P450. 相似文献
3.
G T Miwa A Y Lu 《BioEssays : news and reviews in molecular, cellular and developmental biology》1987,7(5):215-219
The mechanistic significance of a kinetic isotope effect on a cytochrome P-450catalyzed reaction depends, fundamentally, on the nature of the interaction of the substrate with the active site of the enzyme as well as on the nature of the chemistry of the reaction catalyzed. Consequently, kinetic isotope effects can be used to extract information on the topology of the enzyme and the mechanism of substrate oxidation. Kinetic isotope effect studies are sometimes accompanied by ‘metabolic switching’ or a change in metabolic pathway, catalyzed either by the same enzyme or by a different enzyme. For the specific case where ‘metabolic switching’ gives rise to a change in regional specificity for the cytochrome P-450 catalyzed metabolism of a compound, this change can be explained in terms of the topological constraints on substrate binding imposed by the active site of the enzyme. 相似文献
4.
Resonance Raman scattering from cytochrome P450 BM3 is obtained with a Raman microprobe using 406-nm excitation with an accumulation time of a few seconds. The small sample size and rapid measurement time make the routine characterization of P450 systems by resonance Raman spectroscopy easier. Addition of imidazole and imidazole derivatives as inhibitors causes the appearance of additional peaks due to vinyl modes, increases the relative intensity of symmetric modes that would be A(1g) in D(4h) symmetry, and causes a large drop in the intensity of nu(11). This information indicates that the ligation of imidazoles to the heme iron causes the alignment of the vinyl modes with the plane of the heme ring and reduces the out of plane distortion of the ring. The effect of both inhibitors is similar but there is a subtle difference in the extent of the reduction in the intensity of nu(11), which suggests that steric effects within the pocket are having some effect. 相似文献
5.
K Kurokohchi M Nishioka Y Ichikawa 《The Journal of steroid biochemistry and molecular biology》1992,42(3-4):287-292
The effects of various antimycotic reagents and some other reagents on a cytochrome P-450-linked monooxygenase system were investigated with respect to the activities of NADPH-ferricyanide reductase. NADPH-cytochrome c reductase of NADPH-adreno-ferredoxin reductase from NADPH to cytochrome c via adreno-ferredoxin, NADPH-cytochrome P-450-phenylisocyanide complex reductase, and the cholesterol side chain cleavage of the cytochrome P-450scc-linked monooxygenase system. No reagents inhibited the NADPH-ferricyanide reductase activity. Only cloconazole inhibited about 50% of NADPH-cytochrome c reductase activity. Cloconazole, econazole, clotrimazole, etomidate and ketoconazole inhibited both NADPH-cytochrome P-450-phenylisocyanide complex reductase and the side chain cleavage activity of cholesterol of the cytochrome P-450scc-linked monooxygenase system. Cloconazole, econazole, etomidate and ketoconazole behaved like non-competitive inhibitors for NADPH-cytochrome P-450-phenylisocyanide reductase activities and their Ki values were 10(-4)-10(-6) M. Cloconazole was a non-competitive inhibitor of NADPH-cytochrome c reductase and its Ki value was 8.3 x 10(-4) M. Cloconazole, clotrimazole, econazole, etomidate, ketoconazole and mitotane completely inhibited the side chain cleavage activity of cholesterol. 相似文献
6.
Experimental evidence supporting the catalytic activity of the peroxoferric and hydroperoxoferric cytochrome P450 intermediates as alternative oxidants to the compound I (ferryl) state in the oxygenation of organic substrates is reviewed. The peroxoferric P450 state is proposed to function as a nucleophile in the lyase step of the P450-aromatase reaction. Several systems are reviewed in which the hydroperoxoferric P450 intermediate likely functions as a second electrophilic oxidant, the two-oxidants model. These include alkene epoxidation, sulfoxidation, and hydroxylation of methyl groups on cyclopropane rings. The key use of the P450 mutants from different sources in which the conserved threonine in the distal substrate binding pocket is replaced with alanine, in order to minimize the formation of the compound I intermediate and unmask the reactivity of the hydroperoxoferric state, is emphasized. These data are discussed in the context of the two-states model, which proposes that the compound I P450 intermediate has both high- and low-spin states with different reactivities. A complicated reaction profile emerges for the wide range of P450 reactions involving up to three reactive intermediates, of which the most reactive, the compound I P450 state, has two spin states with different reactivities. 相似文献
7.
David C. Heimbrook Stephen G. Sligar 《Biochemical and biophysical research communications》1981,99(2):530-535
We have examined the 5--hydroxylation of camphor by cytochrome P450 in [18O] water/buffer solution. In the reaction of the reconstituted multienzyme system, no 18O-label is observed in the product alcohol. Similarly, in the m-chloroperbenzoic acid or cumene hydroperoxide supported reactions with ferric P450, solvent oxygen is not incorporated into hydroxycamphor. When the analagous reaction is carried out using iodosobenzene as the exogenous oxidant, however, the alcoholic oxygen of the product is derived entirely from the solvent. These results cannot be explained by equilibration of the iodosobenzene oxygen with solvent water before reacting with P450, and suggest a unique mechanism for iodosobenzene-supported P450 oxygenations. We propose two distinct mechanistic activities for cytochrome P450: a hydroxylase, and an oxene transferase, with the former encompassing the classic oxygenase as well as “peroxygenase” reactions. 相似文献
8.
Brahmi Z Katho T Hatsumata R Hiroi A Miyakawa N Yakou E Sugaya K Onose J Abe N 《Bioscience, biotechnology, and biochemistry》2012,76(5):1028-1031
Two effective cytochrome P450 (CYP) inhibitors were isolated from tarragon, Artemisia dracunculus. Their structures were spectroscopically identified as 2E,4E-undeca-2,4-diene-8,10-diynoic acid isobutylamide (1) and 2E,4E-undeca-2,4-diene-8,10-diynoic acid piperidide (2). Both compounds had dose-dependent inhibitory effects on CYP3A4 activity with IC50 values of 10.0 ± 1.3 μM for compound 1 and 3.3 ± 0.2 μM for compound 2, and exhibited mechanism-based inhibition. This is the first reported isolation of effective CYP inhibitors from tarragon (Artemisia dracunculus) purchased from a Japanese market. 相似文献
9.
The hydroxylation of fluorobenzene and aniline, catalyzed by the porphyrin-Fe(III)-peroxide anion with either a cysteinate- or a histidyl-type of axial ligand as well as the hydroxylation of fluorobenzene, catalyzed by porphyrin-Fe(III)-hydroperoxide with a cysteinate-type of axial ligand as catalytic intermediates, have been investigated by electronic structure calculations in local spin-density approximation. Non-repulsive potential curves are, in contrast with porphyrin-Fe(III)-hydroperoxide, obtained only in the case of porphyrin-Fe(III)-peroxide anion as catalytic intermediate. The mutual substrate-porphyrin orientation with a dihedral angle between the plane of the substrate and the porphyrin plane of 45 degrees is more favorable compared with the parallel orientation between these two planes. This orientation differs for the case of fluorobenzene hydroxylation from the corresponding one calculated by us with the ferryl-oxo-pi-cation radical complex as a catalytic intermediate. The calculated reaction profiles show also the effectiveness of the histidyl-type coordinated porphyrin-Fe(III)-peroxide involved in P450 type of hydroxylation reactions. The calculations demonstrate the predominant role of the O1-O2 moiety of the porphyrin-Fe(III)-peroxide anion in the hydroxylation process of the substrates. The results indicate that the porphyrin-Fe(III)-peroxide anion is an effective catalytic species in hydroxylation reactions. In all the studied cases irrespective of the substrate and the nature of the axial ligand, the potential curves reach minimum at approximately 130-140 pm, expressing the length of an aromatic C-O bond. 相似文献
10.
The effects of several imidazole antimycotic agents, an imidazole and several mineralocorticoid analogs on the cytochrome P-450(11)beta-catalyzed 11 beta-hydroxylation of 11-deoxycorticosterone and aldosterone synthesis were examined. Ketoconazole, clotrimazole, miconazole and etomidate were found to be potent inhibitors of the reactions, causing 50% inhibition of the 11 beta-hydroxylase activity at concentrations between 10(-8) and 10(-7) M. The potency of etomidate as to the inhibition of aldosterone- and 18-hydroxycorticosterone-production was found to be almost equal to that in the case of 11 beta-hydroxylation. Spironolactone and other newly synthesized mineralocorticoid analogs were also found to inhibit the cytochrome P-450(11)beta-mediated reactions. The ID50 values of these drugs for inhibition of the 11 beta-hydroxylase activity were almost equal to those in the case of the aldosterone- and 18-hydroxycorticosterone-biosynthetic activities. The results of kinetical studies indicated that one of the mineralocorticoid analogs, Compound 23-0586, acts as a competitive inhibitor for the cytochrome P-450(11)beta-mediated reactions. 相似文献
11.
Porter TD 《Journal of biochemical and molecular toxicology》2002,16(6):311-316
Cytochrome b(5), a 17-kDa hemeprotein associated primarily with the endoplasmic reticulum of eukaryotic cells, has long been known to augment some cytochrome P450 monooxygenase reactions, but the mechanism of stimulation has remained controversial. Studies in recent years have clarified this issue by delineating three pathways by which cytochrome b(5) augments P450 reactions: direct electron transfer of both required electrons from NADH-cytochrome b(5) reductase to P450, in a pathway separate and independent of NADPH-cytochrome P450 reductase; transfer of the second electron to oxyferrous P450 from either cytochrome b(5) reductase or cytochrome P450 reductase; and allosteric stimulation of P450 without electron transfer. Evidence now indicates that each of these pathways is likely to operate in vivo. 相似文献
12.
Chun YJ Shimada T Sanchez-Ponce R Martin MV Lei L Zhao B Kelly SL Waterman MR Lamb DC Guengerich FP 《The Journal of biological chemistry》2007,282(24):17486-17500
Streptomyces and other bacterial actinomycete species produce many important natural products, including the majority of known antibiotics, and cytochrome P450 (P450) enzymes catalyze important biosynthetic steps. Relatively few electron transport pathways to P450s have been characterized in bacteria, particularly streptomycete species. One of the 18 P450s in Streptomyces coelicolor A3(2), P450 105D5, was found to bind fatty acids tightly and form hydroxylated products when electrons were delivered from heterologous systems. The six ferredoxin (Fdx) and four flavoprotein Fdx reductase (FDR) proteins coded by genes in S. coelicolor were expressed in Escherichia coli, purified, and used to characterize the electron transfer pathway. Of the many possibilities, the primary pathway was NADH --> FDR1 --> Fdx4 --> P450 105D5. The genes coding for FDR1, Fdx4, and P450 105D5 are located close together in the S. coelicolor genome. Several fatty acids examined were substrates, including those found in S. coelicolor extracts, and all yielded several products. Mass spectra of the products of lauric acid imply the 8-, 9-, 10-, and 11-hydroxy derivatives. Hydroxylated fatty acids were also detected in vivo in S. coelicolor. Rates of electron transfer between the proteins were measured; all steps were faster than overall hydroxylation and consistent with rates of NADH oxidation. Substrate binding, product release, and oxygen binding were relatively fast in the catalytic cycle; high kinetic deuterium isotope effects for all four lauric acid hydroxylations indicated that the rate of C-H bond breaking is rate-limiting in every case. Thus, an electron transfer pathway to a functional Streptomyces P450 has been established. 相似文献
13.
An immobilized system was developed to detect interactions of human cytochromes P450 (P450) with the accessory proteins NADPH-P450 reductase and cytochrome b(5) (b(5)) using an enzyme-linked affinity approach. Purified enzymes were first bound to wells of a polystyrene plate, and biotinylated partner enzymes were added and bound. A streptavidin-peroxidase complex was added, and protein-protein binding was monitored by measuring peroxidase activity of the bound biotinylated proteins. In a model study, we examined protein-protein interactions of Pseudomonas putida putidaredoxin (Pdx) and putidaredoxin reductase (PdR). A linear relationship (r(2)=0.96) was observed for binding of PdR-biotin to immobilized Pdx compared with binding of Pdx-biotin to immobilized PdR (the estimated K(d) value for the Pdx.PdR complex was 0.054muM). Human P450 2A6 interacted strongly with NADPH-P450 reductase; the K(d) values (with the reductase) ranged between 0.005 and 0.1muM for P450s 2C19, 2D6, and 3A4. Relatively weak interaction was found between holo-b(5) or apo-b(5) (devoid of heme) with NADPH-P450 reductase. Among the rat, rabbit, and human P450 1A2 enzymes, the rat enzyme showed the tightest interaction with b(5), although no increases in 7-ethoxyresorufin O-deethylation activities were observed with any of the P450 1A2 enzymes. Human P450s 2A6, 2D6, 2E1, and 3A4 interacted well with b(5), with P450 3A4 yielding the lowest K(d) values followed by P450s 2A6 and 2D6. No appreciable increases in interaction between human P450s with b(5) or NADPH-P450 reductase were observed when typical substrates for the P450s were included. We also found that NADPH-P450 reductase did not cause changes in the P450.substrate K(d) values estimated from substrate-induced UV-visible spectral changes with rabbit P450 1A2 or human P450 2A6, 2D6, or 3A4. Collectively, the results show direct and tight interactions between P450 enzymes and the accessory proteins NADPH-P450 reductase and b(5), with different affinities, and that ligand binding to mammalian P450s did not lead to increased interaction between P450s and the reductase. 相似文献
14.
S D Gettings C B Brewer W M Pierce J A Peterson A D Rodrigues R A Prough 《Archives of biochemistry and biophysics》1990,276(2):500-509
The efficacy of 2(3)-t-butyl-4-hydroxyanisole (BHA) and other chemicals as chemopreventive agents against chemically induced cancer or toxicity may involve direct modulation of cytochrome P450 activity. Direct interaction of BHA with cytochrome P450 was investigated using substrate-bound, oxyferrous cytochrome P450CIA1 either in a reconstituted system containing cytochrome P450CIA1, putidaredoxin, and putidaredoxin reductase with NADH as electron donor or in the absence of physiological electron donors. In the reconstituted system, BHA caused a concentration-dependent decrease in the production of 5-exo-hydroxycamphor and a substoichiometric increase in hydrogen peroxide production. However, BHA did not appreciably inhibit either NADH oxidation or oxygen utilization under conditions optimal for accumulation of oxyferrous cytochrome P450CIA1 during steady-state metabolism of camphor. In the absence of electron donor, BHA enhanced decomposition of the ternary oxyferrous substrate complex of cytochrome P450CIA1 without the formation of any apparent spectral intermediate(s). The rate of decomposition of the oxyferrous complex was pseudo-first order and was dependent upon the concentration of BHA present. Enhanced decomposition of the complex was not attributable to catalytic turnover of cytochrome P450CIA1 (i.e., acquisition of a second electron from an indeterminate source) since no appreciable metabolism of either camphor or BHA was observed. The enhanced decomposition was accompanied by a substoichiometric increase in hydrogen peroxide production, suggesting that BHA may facilitate four-electron reduction of molecular oxygen to water. These results indicate that BHA inhibits cytochrome P450 function, presumably by enhancing autoxidation of the substrate-bound oxyferrous complex. 相似文献
15.
Zhao Y Sun L Muralidhara BK Kumar S White MA Stout CD Halpert JR 《Biochemistry》2007,46(41):11559-11567
The crystal structure of P450 2B4 bound with 1-(4-chlorophenyl)imidazole (1-CPI) has been determined to delineate the structural basis for the observed differences in binding affinity and thermodynamics relative to 4-(4-chlorophenyl)imidazole (4-CPI). Compared with the previously reported 4-CPI complex, there is a shift in the 1-CPI complex of the protein backbone in helices F and I, repositioning the side chains of Phe-206, Phe-297, and Glu-301, and leading to significant reshaping of the active site. Phe-206 and Phe-297 exchange positions, with Phe-206 becoming a ligand-contact residue, while Glu-301, rather than hydrogen bonding to the ligand, flips away from the active site and interacts with His-172. As a result the active site volume expands from 200 A3 in the 4-CPI complex to 280 A3 in the 1-CPI complex. Based on the two structures, it was predicted that a Phe-206-->Ala substitution would alter 1-CPI but not 4-CPI binding. Isothermal titration calorimetry experiments indicated that this substitution had no effect on the thermodynamic signature of 4-CPI binding to 2B4. In contrast, relative to wild-type 1-CPI binding to F206A showed significantly less favorable entropy but more favorable enthalpy. This result is consistent with loss of the aromatic side chain and possible ordering of water molecules, now able to interact with Glu-301 and exposed residues in the I-helix. Hence, thermodynamic measurements support the active site rearrangement observed in the crystal structure of the 1-CPI complex and illustrate the malleability of the active site with the fine-tuning of residue orientations and thermodynamic signatures. 相似文献
16.
Moritz B. Buergler Alexander Dennig Bernd Nidetzky 《Biotechnology and bioengineering》2020,117(8):2377-2388
Selective oxy-functionalization of nonactivated C-H bonds is a long-standing “dream reaction” of organic synthesis for which chemical methodology is not well developed. Mono-oxygenase enzymes are promising catalysts for such oxy-functionalization to establish. Limitation on their applicability arises from low reaction output. Here, we showed an integrated approach of process engineering to the intensification of the cytochrome P450 BM3-catalyzed hydroxylation of dodecanoic acid (C12:0). Using P450 BM3 together with glucose dehydrogenase for regeneration of nicotinamide adenine dinucleotide phosphate (NADPH), we compared soluble and co-immobilized enzymes in O2-gassed and pH-controlled conversions at high final substrate concentrations (≥40mM). We identified the main engineering parameters of process output (i.e., O2 supply; mixing correlated with immobilized enzyme stability; foam control correlated with product isolation; substrate solubilization) and succeeded in disentangling their complex interrelationship for systematic process optimization. Running the reaction at O2-limited conditions at up to 500-ml scale (10% dimethyl sulfoxide; silicone antifoam), we developed a substrate feeding strategy based on O2 feedback control. Thus, we achieved high reaction rates of 1.86g·L−1·hr−1 and near complete conversion (≥90%) of 80mM (16g/L) C12:0 with good selectivity (≤5% overoxidation). We showed that “uncoupled reaction” of the P450 BM3 (~95% utilization of NADPH and O2 not leading to hydroxylation) with the C12:0 hydroxylated product limited the process efficiency at high product concentration. Hydroxylated product (~7g; ≥92% purity) was recovered from 500ml reaction in 82% yield using ethyl-acetate extraction. Collectively, these results demonstrate key engineering parameters for the biocatalytic oxy-functionalization and show their integration into a coherent strategy for process intensification. 相似文献
17.
Cytochrome P450BM3 has long been regarded as a promising candidate for use as a biocatalyst, owing to its excellent efficiency for the hydroxylation of unactivated C–H bonds. However, because of its high substrate specificity, its possible applications have been severely limited. Consequently, various approaches have been proposed to overcome the enzyme's natural limitations, thereby expanding its substrate scope to encompass non-native substrates, evoking chemoselectivity, regioselectivity and stereoselectivity and enabling previously inaccessible chemical conversions. Herein, these approaches will be classified into three categories: (1) mutagenesis including directed evolution, (2) haem substitution with artificial cofactors and (3) use of substrate mimics, ‘decoy molecules’. Herein, we highlight the representative work that has been conducted in above three categories for discussion of the future outlook of P450BM3 in green chemistry. 相似文献
18.
V Andronik-Lion J L Boucher M Delaforge Y Henry D Mansuy 《Biochemical and biophysical research communications》1992,185(1):452-458
Rat liver microsomes catalyze the oxidation of para-hexyloxy-benzamidoxime 1 to the corresponding arylamide 2 and NO2-, by NADPH and O2. Involvement of cytochromes P450 as catalysts of this reaction was shown by the strong inhibitory effects of CO and miconazole and the spectacular increase of the activity upon treatment of rats with dexamethasone, a specific inducer of cytochromes P450 of the 3A subfamily. Formation of NO during oxidation of 1 was shown by detection of the formation of cytochrome P450- and cytochrome P420-Fe(II)-NO complexes by visible and EPR spectroscopy. The formation of these complexes should be responsible, at least in part, for the fast decrease of the rate of microsomal oxidation of 1 with time. These results suggest that exogenous compounds containing amidine or amidoxime functions could act as precursors of NO in vivo after in situ oxidation by cytochromes P450. 相似文献
19.
The imidazole antifungal agents give rise to adverse reactions and clinically relevant drug interactions. This is due to lack of specificity of the antifungal agents that interact avidly not only with the fungal but also with mammalian cytochrome P-450 proteins. A computer graphic technique capable of predicting the interaction of these structurally-related imidazoles with fungal and mammalian cytochrome P-450 proteins is described. This prediction is achieved by comparing the molecular conformation of these drugs with lanosterol, the substrate of the fungal cytochrome P-450, and with phenobarbitone, an inducing agent of a family of mammalian cytochrome P-450, toward which the antifungal agents show highest inhibitory activity. 相似文献
20.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase. 相似文献